首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
树枝状介孔氧化硅及其复合颗粒的制备和压缩弹性模量
作者:陈爱莲1 2 马翔宇3 王婉莹3 蔡文杰3  杨3 
单位:(1. 常州大学机械工程学院 江苏 常州 213164 2. 江苏省绿色过程装备重点实验室 江苏 常州 213164  3. 常州大学材料科学与工程学院 江苏 常州 213164) 
关键词: 
分类号:树枝状介孔氧化硅;复合颗粒;核壳结构;压缩弹性模量
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 以正己烷、三乙醇胺、正硅酸乙酯和十六烷基三甲基溴化铵等为主要原料,采用改进的油水两相反应体系制备树枝状介孔氧化硅(DMS)颗粒;再以硝酸亚铈为铈源、六亚甲基四胺为缓释沉淀剂,在DMS表面均匀包覆CeO2纳米粒子,得到核壳结构DMS/CeO2复合颗粒。利用扫描电子显微镜、透射电子显微镜、小角度X射线衍射仪、选区电子衍射和氮气吸附–脱附等手段对样品进行结构表征。借助原子力显微镜力曲线技术,评价单个颗粒与探针之间的弹性接触,结合DMT模型拟合计算被测样品的压缩弹性模量。结果表明:DMS颗粒(约92 nm)内部存在中心三维树枝状介孔孔道,平均孔径约6.9 nm;复合颗粒的平均粒径约106 nm,CeO2纳米粒子(5~8 nm)在内核表面均匀包覆形成薄层。DMS颗粒的弹性模量为(3.7±1.2)GPa,对比发现增大孔径有助于介孔氧化硅弹性响应的提高。复合颗粒的模量(6.6±1.9)GPa显著低于CeO2块体材料,更接近于DMS内核,表明其弹性行为由内核所提供,壳层粒子可提高颗粒的整体表面硬度。

基金项目:
国家自然科学基金(51405038, 51575058, 51875052)。
作者简介:
参考文献:

 [1]XU N, HAN W, WANG Y, et al. Nanoscratching of copper surface by CeO2[J]. Acta Mater, 2017, 124: 343–350.

[2]WANG Y, ZHU Y, ZHAO D, et al. Nanoscratch of aluminum in dry, water and aqueous H2O2 conditions[J]. Appl Surf Sci, 2019, 464: 229–235.
[3]陈爱莲, 秦佳伟, 陈杨. 介孔氧化硅微球的合成及其在化学机械抛光中的应用[J]. 硅酸盐学报, 2016, 44(9): 1357–1364.
CHEN Ailian, QIN Jiawei, CHEN Yang. J Chin Ceram Soc, 2016, 44(9): 1357–1364.
[4]RYU J, KIM W, YUN J, et al. Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization[J]. ACS Appl Mater Inter, 2018, 10: 11843–11851.
[5]CHEN Y, LI Z N, MIAO N M. Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribol Int, 2015, 82: 211–217.
[6]CHEN R, WU Y, LEI H, et al. Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: Molecular dynamics simulation[J]. Appl Surf Sci, 2014, 305: 609–616.
[7]WANG L, ZHOU P, YAN Y, et al. Chemical–mechanical wear of monocrystalline silicon by a single pad asperity[J]. Int J Mach Tool Manu, 2017, 120: 61–71.
[8]SHEN D, YANG J, LI X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett, 2014, 14: 923–932.
[9]XUE X, LANG W, YAN X, et al. Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2[J]. ACS Appl Mater Inter, 2017, 9: 15408–15423.
[10]郭风, 朱桂茹, 高从堦. 氰基功能化介孔二氧化硅的制备与表征[J]. 无机材料学报,  2012, 27(2): 134–138.
GUO Feng, ZHU Guiru, GAO Congjie. Chin J Inorg Chem (in Chinese), 2012, 27(2): 134–138.
[11]陈杨, 隆仁伟, 陈志刚. CeO2纳米中空球的制备及表征[J]. 硅酸盐学报, 2010, 38(2): 265–270.
CHEN Yang, LONG Renwei, CHEN Zhigang. J Chin Ceram Soc, 2010, 38(2): 265–270.
[12]SONG X L, JIANG N, LI Y K, et al. Synthesis of CeO2-coated SiO2 nanoparticles and dispersion stability of their suspension[J]. Mater Chem Phys, 2008, 110: 128–135.
[13]BUTTA H, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surf Sci Rep, 2005, 59: 1–152.
[14]HERTZ H. On the contact of elastic solids[J]. J Reine Angew Math, 1881, 92: 156–171.
[15]SNEDDON I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile[J]. Int J Eng Sci, 1965, 3: 47–57.
[16]JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proc Roy Soci London, 1971, 324: 301–313.
[17]DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. J Colloid Interf Sci, 1975, 53: 314–326.
[18]SURIANO R, CREDI C, LEVI M, et al. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness[J]. Appl Surf Sci, 2014, 311: 558–566.
[19]ROMEIS S, PAUL J, HERRE P, et al. Local densification of a single micron sized silica sphere by uniaxial compression[J]. Scripta Mater, 2015, 108: 84–87.
[20]QI Y, CHEN L, JIANG S, et al. Investigation of silicon wear against non-porous and micro-porous SiO2 spheres in water and in humid air[J]. RSC Adv, 2016, 6: 89627–89634.
[21]WILLIFORD R E, LI X S, ADDLEMAN R S, et al. Mechanical stability of template mesoporous silica thin films[J]. Micropor Mesopor Mat, 2005, 85: 260–266.
[22]李娃, 李凤云, 史志胜, 等. 毫米级轻质高强度多孔二氧化硅球的制备与表征[J]. 高等学校化学学报, 2015, 36(9): 1655–1660.
LI Wa, LI Fengyun, SHI Zhishen, et al. Chem J Chin Univ (in Chinese), 2015, 36(9): 1655–1660.
[23]DEMICHELIS A, DIVIETO C, MORTATI L, et al. Toward the realization of reproducible atomic force microscopy measurements of elastic modulus in biological samples[J]. J Biomech, 2015, 48: 1099–1104.
[24]GUO D, LI J, XIE G X, et al. Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: Size effect and error analysis[J]. Langmuir, 2014, 30: 7206–7212.
[25]CAO X, PAN G, HUANG P, et al. Silica-coated core–shell structured polystyrene nanospheres and their size-dependent mechanical properties[J]. Langmuir, 2017, 33: 8225–8232.
[26]陈杨, 陈爱莲, 秦佳伟, 等. 亚微米介孔二氧化硅微球的制备及其弹性模量的拟合计算[J]. 中国有色金属学报, 2017, 27(6): 1228–1235.
CHEN Yang, CHEN Ailian, QIN Jiawei, et al. Chin J Nonferr Metal (in Chinese), 2017, 27(6): 1228–1235.
[27]JAUFFRÈS D, YACOU C, VERDIER M, et al. Mechanical properties of hierarchical porous silica thin films: Experimental characterization by nanoindentation and finite element modeling[J]. Micropor Mesopor Mat, 2011, 140: 120–129.
[28]WACHTEL E, LUBOMIRSKY I. The elastic modulus of pure and doped ceria[J]. Scripta Mater, 2011, 65: 112–117.
[29]YAVO N, NOIMAN D, WACHTEL E, et al. Elastic moduli of pure and gadolinium doped ceria revisited: Sound velocity measurements[J]. Scripta Mater, 2016, 123: 86–89.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com