首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
锰系锂离子电池正极材料的锰溶解及沉积机理研究进展
作者:李文博1 2 李世友1 2 耿彤彤1 2 彭峰峰1 2 梁有维1 2 
单位:(1. 兰州理工大学石油化工学院 兰州 730050 2. 甘肃省锂离子电池电解液材料工程实验室 兰州 730050) 
关键词:锂离子电池 锰基正极材料 锰溶解 锰沉积 机理 
分类号:TM912.6
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 锰溶解是造成锰基正极材料性能恶化的重要因素之一,它不仅直接引起电极活性材料的损失,还会随着锰的迁移而在负极表面进行沉积,进而引发一系列的副反应,造成电池容量的不可逆损失。总结了锰系锂离子电池正极材料的锰溶解及沉积机理,分析了其对电池性能的影响,提出了抑制锰溶解及沉积的方法,并对锰基正极材料的发展进行了展望。

基金项目:
国家自然科学基金(51502124,21766017);白银市科技计划项目(2017-2-11G)。
作者简介:
参考文献:

 [1]NOWAK S, WINTER M. The role of cations on the performance of lithium ion batteries: A quantitative analytical approach[J]. Acc Chem Res, 2018, 51(2): 265–272.

[2]GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. J Electrochem Soc, 2017, 164(2): A389–A399.
[3]ZHAN C, QIU X, LU J, et al. Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery[J]. Adv Mater Interfaces, 2016, 3(11): 1500856.
[4]HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J]. J Solid State Chem, 1981, 39(2): 142–147.
[5]SAULNIER M, AUCLAIR A, LIANG G, et al. Manganese dissolution in lithium-ion positive electrode materials[J]. Solid State Ionics, 2016, 294: 1–5.
[6]QIAO R, WANG Y, OLALDE-VELASCO P, et al. Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading[J]. J Power Sources, 2015, 273: 1120–1126.
[7]WALZ K A, JOHNSON C S, GENTHE J, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings[J]. J Power Sources 2010, 195(15): 4943–4951.
[8]SHILINA Y, ZIV B, MEIR A, et al. Combined electron paramagnetic resonance and atomic absorption spectroscopy/inductively coupled plasma analysis as diagnostics for soluble manganese species from Mn-based positive electrode materials in Li-ion cells[J]. Anal Chem, 2016, 88(8): 4440–4447.
[9]BANERJEE A, SHILINA Y, ZIV B, et al. On the oxidation state of manganese ions in Li-ion battery electrolyte solutions[J]. J Am Chem Soc, 2017, 139(5): 1738–1741.
[10]EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique[J]. J Power Sources, 2016, 329: 364–371.
[11]BÖRNER M, KLAMOR S, HOFFMANN B, et al. Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries[J]. J Electrochem Soc, 2016, 163(6): A831–A837.
[12]LI S, XUE Y, CUI X, et al. Effect of sulfolane and lithium bis(oxalato)borate-based electrolytes on the performance of spinel LiMn2O4 cathodes at 55℃[J]. Ionics, 2016, 22(6): 797–801.
[13]WANG R,LI X,WANG Z,et al.Manganese dissolution from LiMn2O4 cathodes at elevated temperature: Methylene methanedisulfonate as electrolyte additive[J]. J Solid State Electrochem, 2015, 20(1): 19–28.
[14]KASNATSCHEEW J, EVERTZ M, STREIPERT B, et al. Changing established belief on capacity fade mechanisms: Thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under high voltage conditions[J]. J Phys Chem C, 2017, 121(3): 1521–1529.
[15]BANERJEE A, ZIV B, SHILINA Y, et al. Multifunctional manganese ions trapping and hydrofluoric acid scavenging separator for lithium ion batteries based on poly(ethylene-alternate-maleic acid) dilithium salt[J]. Adv Energy Mater, 2017, 7(3): 1601556.
[16]LEGGESSE E G, TSAU K H, LIU Y T, et al. Adsorption and decomposition of ethylene carbonate on LiMn2O4 cathode surface[J]. Electrochem Acta, 2016, 210: 61–70.
[17]BOULINEAU A, SIMONIN L, COLIN J F, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano Lett, 2013, 13(8): 3857–3863.
[18]SHKROB I A, KROPF A J, MARIN T W, et al. Manganese in graphite anode and capacity fade in Li ion batteries[J]. J Phys Chem C, 2014, 118(42): 24335–24348.
[19]KIM D, PARK S, CHAE O B, et al. Re-deposition of manganese species on spinel LiMn2O4 electrode after Mn dissolution[J]. J Electrochem Soc, 2012, 159(3): A193–A197.
[20]ZHAN C, LU J, JEREMY K A, et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems[J]. Nat Commun, 2013, 4(9): 2437.
[21]CHEN H, MA T, ZENG Y, et al. Mechanism of capacity fading caused by Mn (II) deposition on anodes for spinel lithium manganese oxide cell[J]. J Wuhan Univ Technol-Mater Sci Ed. 2017, 32(1): 1–10.
[22]DELACOURT C, KWONG A, LIU X, et al. Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries[J]. J Electrochem Soc, 2013, 160(8): A1099–A1107.
[23]GOWDA S R, GALLAGHER K G, CROY J R, et al. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells[J]. Phys Chem Chem Phys, 2014, 16(15): 6898–6902.
[24]NORDH T, YOUNESI R, HAHLIN M, et al. Manganese in the SEI layer of Li4Ti5O12 studied by combined NEXAFS and HAXPES techniques[J]. J Phys Chem C, 2016, 120(6): 3206–3213.
[25]LEE Y K, PARK J, WEI L, et al. A comprehensive study of manganese deposition and side reactions in Li-ion battery electrodes[J]. J Electrochem Soc, 2017, 164(12): A2812–A2822.
[26]WU K, QIAN L, SUN X, et al. Influence of manganese ions dissolved from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries[J]. J Solid State Electrochem, 2018, 22(2): 479–485.
[27]LIN Y X, LIU Z, LEUNG K, et al. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components[J]. J Power Sources, 2016, 309: 221–230.
[28]DELACOURT C, KWONG A, LIU X, et al. Effect of manganese contamination on the solid-electrolyte-interphase properties in Li-ion batteries[J]. J Electrochem Soc, 2013, 160(8): A1099–A1107.
[29]LIM J M, OH R G, KIM D, et al. Design of surface doping for mitigating transition metal dissolution in LiNi0.5Mn1.5O4 nano particles[J]. Chem Sus Chem, 2016, 9(20): 2967–2973.
[30]LI Q, LI G, FU C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Appl Mater Inter, 2014, 6(13): 10330–10341.
[31]ZHAO S, YING B, CHANG Q, et al. Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries[J]. Electrochim Acta, 2013, 108: 727–735.
[32]YANG T, SUN K, LEI Z, et al. The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. J Solid State Electrochem, 2011, 15(2): 391–397.
[33]QING C, BAI Y, YANG J, et al. Enhanced cycling stability of LiMnO cathode by amorphous FePO coating[J]. Electrochim Acta, 2011, 56(19): 6612–6618.
[34]CUI X, TANG F, LI C, et al. Improving Mn tolerance of lithium-ion batteries by using lithium bis(oxalato)borate-based electrolyte[J]. Electrochim Acta, 2017, 253(1): 291–301.
[35]KIM J H , PIECZONKA N P W , LI Z , et al. Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries[J]. Electrochim Acta, 2013, 90: 556–562.
[36]JABER-ANSARI L, PUNTAMBEKAR K P, KIM S, et al. Suppressing manganese dissolution from lithium manganese oxide spinel cathodes with single-layer graphene[J]. Adv Energy Mater, 2015, 5(17): 1500646.
[37]LIM J M, OH R G, KIM D, et al. Design of surface doping for mitigating transition metal dissolution in LiNi0.5Mn1.5O4 nano particles[J]. Chem Sus Chem, 2016, 9(20): 2967–2973.
[38]CUI X, TANG F, LI C, et al. Improving Mn tolerance of lithium-ion batteries by using lithium bis(oxalato)borate-based electrolyte[J]. Electrochim Acta, 2017, 253(1): 291–301.
[39]KOO B,LEE J,LEE Y,et al.Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 ℃[J].Electrochim Acta,2015,173: 750–756.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com