首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多壁碳纳米管对太阳能电池光阳极微裂纹的优化和性能的影响
作者:  王启明 孙洪全 王欣羽     
单位:(哈尔滨理工大学材料科学与工程学院 哈尔滨 150040) 
关键词:多壁碳纳米管 量子点敏化太阳能电池 二氧化钛光阳极 电子传输 
分类号:TM914
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 在量子点敏化太阳能电池(QDSCs)中,多孔二氧化钛(TiO2)光阳极薄膜在烧结过程中会产生很多微小裂纹,影响电子传输,导致太阳能电池性能下降。利用多壁碳纳米管(MWCNTs)独特的管状结构和良好的导电性能来优化TiO2光阳极薄膜内部的微裂纹,探究了不同质量分数(0%、0.01%、0.05%、0.10%、0.50%)的MWCNTs对量子点敏化太阳能电池MWCNTs/TiO2复合光阳极性能的影响。对光阳极进行物相及微观形貌分析表明:加入适量的MWCNTs可以与TiO2纳米颗粒均匀混合,并且MWCNTs贯穿了光阳极薄膜表面的微裂纹。但是过多的MWCNTs会聚集成团,引入大量缺陷。采用连续离子层沉积法在以上的光阳极表面沉积硫化镉(CdS)量子点和硫化锌(ZnS)量子点阻隔层,以硫化铜(CuS)为对电极,多硫电解液为电解质组装电池试样,测量其伏安特性(J−V)曲线。结果表明:添加0.05% MWCNTs的TiO2光阳极电池的光电性能最优,其开路电压和短路电流密度分别可达0.65 V和11.51 mA/cm2,与未添加MWCNTs的光阳极电池相比,分别提高了16.1%和58.3%,其光电转化效率可达3.14%,提高了72.2%。

基金项目:
黑龙江省自然科学基金(E2018044);哈尔滨市优秀学科带头人项目(2017RAXXJ078)。
作者简介:
参考文献:

 [1] ALKUAM E, BADRADEEN E, GUISBIERS G. Influence of CdS morphology on the efficiency of dye-sensitized solar cells[J]. ACS Omega, 2018, 3: 13433–13441.

[2] YOUNAS M, GONDAL M A, DASTAGEER M A, et al. Fabrication of cost effective and efficient dye sensitized solar cells with WO3-TiO2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode[J]. Ceramics International, doi: 10.1016/j.ceramint.2018.09.269.
[3] TIAN J J, CAO G Z. Design fabrication and modification of metal oxide semiconductor for improving coversion efficiency of excitionic solar cell[J]. Coord Chem Rev, 2016, 320/321: 193–215.
[4] WANG W, ZHAO L J, WANG Y, et al. A facile secondary deposition for improving quantum dot loading in fabricating quantum dot solar cells[J]. J Am Chem Soc, doi: 10.1021/jacs.8b10901.
[5] FANG S, SUN M, ZHOU Y, et al. Solvothermal synthesis of CdS QDs/MWCNTs nanocomposites with high efficient photocatalytic activity under visible light irradiation[J]. J Alloy Compd, doi: 10.1016/j.jallcom, 2015, 09.229.
[6] KOKAL K R, DEEPA M, KALLURI A, et al. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabri[J]. Phys Chem Chem Phys, doi: 10.1039/c7cp05582j.
[7] SELOPAL S G, MOHAMMADNEZHAD M, PARDO N F, et al. A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO2 hybrid photoanode for high efficiency hydrogen generation[J]. Nanoscale Horizons, doi: 10.1039/C8NH00227D.
[8] VOKHMINTCEV K V, SAMOKHVALOV P P S, NABIEV I. Charge transfer and separation in photoexcited quantum dot-based systems[J]. Nano Today, 2016, 11: 189–211.
[9] CHENG Y, ARINZE E S, PALMQUIST N, et al. Advancing colloidal quantum dot photovoltaic technology[J]. Nanophotonics, 2016, 5(1): 31–54.
[10] MORASERÓ I, BISQUERT J. Breakthroughs in the development of semiconductor-sensitized solar cells[J]. J Phys Chem Lett, 2010, 1: 3046–3052.
[11] ZHANG Y N, ZHANG J Y, ZHENG W. Optimizing multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for QDSCs[J]. Electrochim Acta, doi: 10.1016/j. electacta 2018.07.137.
[12] LI Y T. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays[J]. Nanoscale Res Lett, 2013, 8(1): 67–67.
[13] LIU C, LIU Z, Li Y J, et al. Cds/PbS co-sensitized ZnO nanorods and its photovoltaic properties[J]. Appl Surf Sci, 2011, 257(16): 7041–7046.
[14] ZHOU N, CHEN G P, ZHANG X L, et al. Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution[J]. Electrochem Commun, 2012, 20: 97–100.
[15] BORJA H J, VOROBIEV Y V, BON R R. Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process[J]. Sol Energy Mater Sol Cells, 2011, 95(7): 1882–11888.
[16] SAMADPOUR M. Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent[J]. Sol Energy, 2017, 144: 63–70.
[17] ZHENG W, ZHANG Y N, WANG D, et al. Optimization of the CdS quantum dot sensitized solar cells with ZnS passivation layer[J]. J Mater Sci: Mater Electron, 2018, 29: 14796–14802.
[18] ZHANG Y N, SUN H Q, ZHANG J Y, et al. The performance of QDSCs based on 3D structural counter electrodes of multi-wall carbon nanotubes and nanographite[J]. J Mater Sci: Mater Electron, 2018, 29: 20057–20063.
[19] RUHANE T A, ISLAM M T, RANHAMAN M S, et al. Impact of photo electrode thickness and annealing temperature on natural dye sensitized solar cell[J]. Sustainable Energy Technol Assess, 2017, 20: 72–177.
[20] BRENNAN L J. Carbon nanomaterials for dye-sensitized solar cell applications: A bright future[J]. Adv Energy Mater, 2011, 1(4): 472–止页.
[21] KUMAR U, SIKARWAR S, SONKER R K, et al. Carbon nanotube: synthesis and application in solar cell[J]. J Inorg Organomet Polym Mater, 2016, 26(6): 1231–1242.
[22] CHANG H, KAO M J, HUANG K D, et al. Application of TiO2 nanopaticles coated multi-wall carbon nanotube to dye-sensitized solar cells[J]. J Nanosci Nanotechnol, 2010, 10(11): 7671–7675.
[23] MUDULI S, LEE W, DHAS V, et al. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2−MWCNT nanocomposites[J]. ACS Appl Mater Interfaces, 2009, 1(9): 2030–2035.
[24] LEE T Y, ALEGAONKAR P S, YOO J B. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes[J]. Thin Solid Films, 2007, 515(12): 5131–5135.
[25] CHSNG H, HSIEH T J, CHEN T L, et al. Dye-sensitized solar cells made with TiO2-coated multi-wall carbon nanotubes and natural dyes extracted from ipomoea[J]. J Jpn Inst Met, 2009, 50(12): 2879–2884.
[26] YU J, MA T, LIU S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Phys Chem Chem Phys, 2011, 13(8): 3491–3501.
[27] FAN J, LIU S, YU J. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films[J]. J Mater Chem, 2012, 22(33): 17027–17036.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com