首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于LBM-CA耦合模型的定向凝固多晶硅小平面枝晶生长数值模拟
作者:  陈洪建     
单位:(河北工业大学材料科学与工程学院 天津 300130) 
关键词:多晶硅 数值模拟 小平面枝晶 格子Boltzmann 元胞自动机 
分类号:TQ174.75
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 为了更好的研究高各向异性小平面枝晶生长。提出了一种综合考虑动力学各向异性和界面能各向异性的小平面枝晶生长的格子Boltzmann方法-元胞自动机(LBM-CA)耦合模型,对硅小平面枝晶的生长过程及生长形状进行模拟;验证所采用的新动力学各向异性方程的正确性;研究了界面能各向异性、动力学各向异性和过冷度对小平面枝晶生长的影响。结果表明:小平面枝晶较非小平面枝晶表现出更强的各向异性;界面能各向异性系数的增大,小平面枝晶生长的各向异性显著增大,生长速率变化、部分取向缺失;过冷度的增大,硅晶体由小平面晶粒生长变为小平面枝晶,其各向异性也显著增强,取向缺失增加,棱角更加明显,二次枝晶臂生长速率加快;动力学各向异性增大,二次枝晶臂生长速率、长度和数量均有增加。

基金项目:
国家自然科学基金项目(51475138)。
作者简介:
参考文献:

 [1]HAMILTON D R, SEIDENSTICKER R G. Propagation mechanism of germanium dendrites[J]. J Appl Phys, 1960, 31(7): 1165?1168.

[2]WAGNER R S. On the growth of germanium dendrites[J]. Acta Metall, 1960, 8(1): 57?60.
[3]FUJIWARA K, MAEDA K, USAMI N, et al. Growth mechanism of Si-faceted dendrites[J]. Phys Rev Lett, 2008, 101(5): 055503.
[4]LIN H K, LAN C W. Three-dimensional phase field modeling of silicon thin-film growth during directional solidification: Facet formation and grain competition[J]. J Cryst Growth, 2014, 401(9): 740?747.
[5]ZHI C, CHEN C L, HAO L M. Numerical simulation of facet dendrite growth[J]. Trans Nonferrous Met Soc China, 2008, 18(4): 938?943.
[6]YIN H, FELICELLI S D, WANG L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods[J]. Acta Mater, 2011, 59(8): 3124?3136.
[7]ESHRAGHI M, FELICELLI S D, JELINEK B. Three dimensional simulation of solutal dendrite growth using lattice Boltzmann and cellular automaton methods[J]. J Cryst Growth, 2012, 354(1): 129?134.
[8]桂云鹏. 基于LB-CA的耦合模型模拟铝合金在对流中的枝晶生长[D]. 南昌: 南昌大学) 2014.
GUI Yunpeng. Simulation of dendrite growth in convection of aluminium alloy based on LB-CA coupling model (in Chinese, dissertation). Nanchang: Nanchang University, 2014. 
[9]ZHAO Y, QEN R S, CHEN D F. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification[J]. J Cryst Growth, 2013, 377(1): 72?77.
[10]CHAHOUND M, FEHLY D, WEHMANN H H, et al. Cellular-automata-based simulation of anisotropic crystal growth[J]. J Cryst Growth, 2000, 220(4): 471?479.
[11]ZINOVIEVAa O, ZINOVIEV A, PLOSHIKHIN V, et al. A solution to the problem of the mesh anisotropy in cellular automata simulations of grain growth[J]. Comput Mater Sci, 2015, 108: 168?176.
[12]WEI L, LIN X, WANG M, et al. A cellular automaton model for the solidification of a pure substance[J]. Appl Phys A, 2011, 103(1): 123?133.
[13]ZHAO Y, BILLINGS S A, COCA D. Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighbourhoods[J]. Int J Model Ident Control, 2008, 6(2): 119?125 (117).
[14]ESHRAGHI M, JELINEK B, FELICELLI S D. Large-scale three-dimensional simulation of dendritic solidification using lattice Boltzmann method[J]. J Met, 2015, 67(8): 1786?1792.
[15]SUN D K, ZHU M F, PAN S Y, et al. Lattice Boltzmann modeling of dendritic growth in forced and natural convection[J]. Comput Math Appl, 2011, 61(12): 3585?3592.
[16]PAN S, ZHU M. A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater, 2010, 58(1): 340?352.
[17]UEHARA T, SEKERKA R F. Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient[J]. J Cryst Growth, 2003, 254(1/2): 251?261.
[18]LIN H K, CHEN H Y, LAN C W. Phase field modeling of facet formation during directional solidification of silicon film[J]. J Cryst Growth, 2014, 385(1): 134?139.
[19]LIAN Q, LIU W, LI R, et al. Numerical simulation of multi-crystalline silicon crystal growth using a macro–micro coupled method during the directional solidification process[J]. Appl Sci, 2016, 7(1): 21?26.
[20] AOYAMA T, KURIBAYASHI K. Influence of undercooling on solid/liquid interface morphology in semiconductors[J]. Acta Mater, 2000, 48(14): 3739?3744.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com