首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Zn1–xCoxO纳米纤维的电纺制备及其吸波性能
作者:汪心坤   王建江 
单位:(陆军工程大学石家庄校区 石家庄 050003) 
关键词:聚乙烯吡咯烷酮 氧化锌 钴掺杂 纳米纤维 静电纺丝 电磁参数 微波吸收 
分类号:TB34
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 采用溶胶-凝胶技术和静电纺丝法制备了聚乙烯吡咯烷酮(PVP)/Zn1–xCoxO(0~0.08)复合纳米纤维,经过600 ℃煅烧处理,获得了Zn1–xCoxO(0~0.08)纳米纤维,通过X射线衍射、Fourier红外光谱、扫描电子显微镜、能谱仪和矢量网络分析仪等技术对样品的物相、形貌、结构和电磁参数进行表征。结果表明:600 ℃煅烧2 h得到的Zn1–xCoxO纳米纤维为六方纤锌矿型结构,纤维直径在100 nm左右。相对于纯ZnO纳米纤维,Zn1–xCoxO纳米纤维的微波吸收性能得到显著提高,其主要吸波机制为介电损耗。当匹配层厚度为2 mm,x=0.04时,样品吸收效果最佳,在频率为8.2 GHz时,最低反射率达–30.6 dB,低于–10 dB的吸收频带为6.7~9.7 GHz,带宽达到3 GHz,与传统溶胶-凝胶法在相同条件下制得的Zn0.96Co0.04O粉体样品相比,吸波性能显著提高。

基金项目:
陆军工程大学石家庄校区科研创新发展基金(KYSEJQEL1910)。
作者简介:
参考文献:

 [1] Hwang E S, Kim J S, Jeon S M, et al. In2Ga2ZnO7 oxide semiconductor based charge trap device for NAND flash memory[J]. Nanotechnology, 2018, 29(15): 155203.

[2] Zhou X, Cheng X, Zhu Y, et al. Ordered porous metal oxide semiconductors for gas sensing[J]. Chin Chem Lett, 2018(3): S1001841717302255.
[3] 陈新亮, 陈莉, 周忠信, 等. Cu2O/ZnO氧化物异质结太阳电池的研究进展[J]. 物理学报, 2018, 67(11).
CHEN Xinliang, CHEN Li, ZHOU Zhongxin, et al. J Acta Phys Sin (in Chinese), 2018, 67(11).
[4] 廖润钱, 钱海霞, 曾燮榕, 等. 用于光催化的金属氧化物多孔材料的研究进展[J]. 材料导报, 2018, 32(S1): 54–62, 67.
LIAO Runqian, QIAN Haixia, ZENG Xierong, et al. J Mater Rep (in Chinese), 2018, 32(S1) :54–62, 67.
[5] 刘增伟, 杨希, 孙杰, 等. 二氧化锡基气敏材料研究进展[J]. 材料导报, 2017, 31(S1): 32–38.
LIU Zengwei, YANG Xi, SUN Jie, et al. J Mater Rep (in Chinese), 2017, 31(S1): 32–38.
[6] Özgür Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J Appl Phys, 2005, 98(4): 11–1.
[7] Zhao B, Gang S, Fan B, et al. Preparation and microwave absorption of porous hollow ZnO by CO2 soft-template[J]. Adv Powder Technol, 2014, 25(6): 1761–1766.
[8] Zhuo R, Wang Y, Yan D, et al. One-step synthesis and excellent microwave absorption of hierarchical tree-like ZnO nanostructures[J]. Mater Lett, 2014, 117(1): 34–36.
[9] Wang Z F, Zhang Y H, Mao J, et al. Study on cerium doped flower-like zno microcrystaline preparation and its microwave absorbing properties[J]. Adv Mater Res, 2014, 834–836: 12–17. 
[10] Shu R, Xing H, Cao X, et al. Preparation, microwave absorption and infrared emissivity of Ni-doped ZnO/Al powders by Coprecipitation method in the GHz range[J]. Nano, 2016, 11(04): 1650047.
[11] Ondarçuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns[J]. Eur Phys Lett, 2007, 42(2): 215.
[12] Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angew Chem Int Ed, 2002, 41(7): 1221.
[13] Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix[J]. J Biomed Mater Res, 1998, 46(1): 60–72.
[14] Liu G J, Ding J F, QiaoL J, et al. Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers Preparation, characterization, and liquid crystalline properties[J]. Chem-A Eur J, 1999, 5(9): 2740–2749.
[15] Ponhan W, Maensiri S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers[J]. Solid State Sci, 2009, 11(2): 179–184.
[16] 李俊寿, 石随林, 赵芳, 等. SnO2/Zn2SnO4纳米结构的制备及光谱性质[J]. 稀有金属材料与工程, 2013, 42(S1): 6–9.
LI Junshou, SHI Suilin, ZHAO Fang, et al. J Rare Metal Mater Eng (in Chinese), 2013, 42(S1): 6–9.
[17] 闫军, 崔海萍, 游毓聪, 等. 无机阴离子掺杂对TiO2薄膜光催化性能的影响[J]. 稀有金属材料与工程, 2007, 36(S1): 873–875.
YAN Jun, CUI Haiping, YOU Shucong, et al. J Rare Metal Mate Eng (in Chinese), 2007, 36(S1): 873–875.
[18] 韩维业, 赵天晨, 马瑞廷. 钴离子掺杂对纳米ZnO结构和性能的影响[J]. 沈阳理工大学学报, 2017(6): 10–13.
HAN Weiye, ZHAO Tianchen, MA Ruiting. J Shenyang Ligong University (in Chinese), 2017(6): 10–13.
[19] Rong Q, Du Y, Ying W, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 599–606.
[20] 李会会. 掺杂ZnO粉体的制备和红外发射率的研究[D]. 西安: 西安电子科技大学, 2014.
LI Huihui. Preparation and infrared emissivity of Doped ZnO powders (in Chinese, dissertation). Xi an: Xidian University, 2014.
[21] 李亚林. 金属离子掺杂纳米氧化锌的制备及其光催化性能研究[D]. 重庆: 重庆大学, 2009.
LI Yalin. Preparation of metal ion doped nano-zinc oxide and its photocatalytic activity (in Chinese, dissertation). Chongqing: Chongqing University, 2009.
[22] Wen F S, Zhang F, Xiang J Y. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer[J]. J Magn Magn Mater, 2013, 343: 281–285.
[23] 张雪珂, 向军, 吴志鹏, 等. Co含量对轻质微波吸收剂C/Co纳米纤维吸波性能的影响[J]. 无机材料学报, 2017, 32(12): 1299–1307.
ZHANG Xueke, XIANG Jun, WU Zhipeng, et al. J Inorg Mater (in Chinese), 2017, 32(12): 1299–1307.
[24] Rong Q, Du Y, Ying W, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 599–606.
[25] Wang T, Wang H, Chi X, et al. Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon[J]. Carbon, 2014, 74(8): 312–318.
[26] Xu H, Sun W, Qiu X, et al. Structural, magnetic and microwave absorption properties of Ni-doped ZnO nanofibers[J]. Journal of Mater Sci Mater Electron, 2016, 28(3): 1–9.
[27] Deng Y, Ling Z, Shen B, et al. Microwave characterization of submicrometer-sized nickel hollow sphere composites[J]. J Appl Phys, 2006, 100(1): 14304.
[28] 程磊. 一维氧化锌的制备及其吸波性能研究[D]. 武汉: 武汉理工大学, 2012.
CHENG Lei. Preparation of one-dimensional zinc oxide and its absorbing properties (in Chinese, dissertation). Wuhan: Wuhan University of Technology, 2012.
[29] 张飒, 王建江, 赵芳, 等. 静电纺丝技术制备吸波材料的研究现状与进展[J]. 功能材料, 2018, 49(2): 2067–2073.
ZHANG Sa, WANG Jianjiang, ZHAO Fang, et al. J Funct Mater (in Chinese), 2018, 49(2): 2067–2073.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com