首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
从废铜屑和铜线路板蚀刻废液中回收提取四面体CuCl及其储锂性能
作者: 境1 侯宏英1 刘显茜2  远1 邱进旭1  雷1 
单位:(1. 昆明理工大学材料科学与工程学院 昆明 650093 2. 昆明理工大学机电工程学院 昆明 650093) 
关键词:氯化亚铜 废铜 蚀刻废液 锂离子电池 负极材料 回收 
分类号:O646
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 通过一步归中反应同时回收含铜蚀刻废液与金属铜边角料得到CuCl四面体晶粒,并考察其电化学储锂性能。结果表明:四面体CuCl晶粒具有4个光滑的三角形表面及6个等长的棱;即使在10 C循环2 000圈,CuCl负极的可逆放电比容量仍能稳定在101.8 mAh/g,高于同样条件下石墨负极的放电比容量,表现了良好的大倍率长循环储锂稳定性。该结果有助于推进废铜资源的循环经济模式和可持续能源的发展。

基金项目:
国家自然科学基金资助项目(51566006和51363011);云南省第十九批学术带头人资助项目。
作者简介:
参考文献:

 [1] 陈君华, 王飞, 陈忠平, 等. 铜银改性六方介孔硅材料的结构及抗菌性能[J]. 硅酸盐学报, 2009, 37(5): 760–766.

CHEN Junhua, WANG Fei, CHEN Zhongping, et al. J Chin Ceram Soc, 2009, 37(5): 760–766.
[2] 尚郑平, 王项, 范国栋, 等. 铜铝复合材料生产与应用[J]. 中国有色金属, 2014, 13(1): 45–46.
SHANG Zhengping, WANG Xiang, FAN Guodong, et al. Chin J Nonferrous Met (in Chinese), 2014, 13(1): 45–46.
[3] Yu M, Zeng X, Song L, et al. Examining regeneration technologies for etching solutions: A critical analysis of the characteristics and potentials[J]. J Clean Prod, 2016, 113(1): 973–980.
[4] Kobayashi T, Kano K, Suzuki T, et al. Novel on-site cupric oxide recovery process from waste containing copper[J]. Jpn J Appl Phys, 2013, 52(5): 5–6.
[5] 王治科, 武海丽, 叶存玲, 等. 过硫酸钠直接回收废电路板金属富集体中的铜[J].中国有色金属, 2015(10): 34–36. 
WANG Zhike, WU Haili, YE Cunling, et al. Chin J Nonferrous Met  (in Chinese), 2015(10): 34–36.
[6] 雷贵春. 铜渣回收工艺研究[J]. 新疆有色金属, 1998(2): 14–19. 
LEI Guichun. Xinjiang J Nonferrous Met (in Chinese), 1998(2): 14–19.
[7] Kobayashi T, Kano K, Suzuki T, et al. A novel technology for on-site cupric oxide recovery from cupric chloride etchant waste[J]. Water Sci Technol, 2011, 64(2): 416–427.
[8] Sze Y K, Wong J. A study of a solvent extraction method for the regeneration of ammoniacal etching solutions of copper[J]. Environ Technol, 1994, 15(8): 785–793. 
[9] Hou H, Yao Y, Liu S, et al. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode[J]. Waste Manage, 2017, 65(1): 147–152.
[10] Liu S, Hou H, Liu X, et al. Recycled hierarchical tripod-like CuCl from Cu-PCB waste etchant for lithium ion battery anode[J]. J Hazard Mater, 2016, 324(1): 357–364.
[11] 许万祥, 张卜升, 李波, 等. 海绵铜浸出液还原沉淀氯化亚铜[J]. 湿法冶金, 2015(4): 301–304.
XU Wanxiang, ZHANG Pusheng, LI Bo, et al. Hydrometal Chin (in Chinese), 2015(4): 301–304.
[12] Li H, Wang Y, Huang J, et al. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties[J], Electrochim Acta, 2017, 225(1): 443–451.
[13] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater, 2013, 12(6): 518–522.
[14] Lu P, Sun Y, Xiang H, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(8): 1–8.
[15] Meng R, Hou H, Liu X, et al. High performance binder-free quaternary composite CuO/Cu/TiO2NT/Ti anode for lithium ion battery[J]. Ceram Int, 2016, 42(1): 6039–6045.
[16] 侯宏英, 段继祥, 廖启书, 等. 多级ZnO纳米片/Fe负极的制备及锂电性能[J]. 硅酸盐学报, 2018, 46(1): 35–39.
HOU Hongying, DUAN Jixiang, LIAO Qishu, et al. J Chin Ceram Soc, 2018, 46(1): 35–39.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com