首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
共沉淀法制备锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料
作者:李文明 邱茂琴 杨则恒 张卫新 
单位:(合肥工业大学化学与化工学院 合肥 230009) 
关键词:共沉淀法 钴锰酸锂 富锂锰基 正极材料 锂电子电池 
分类号:TM912
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 采用简易的草酸盐共沉淀方法,结合后续混锂焙烧制备了锂离子电池0.5Li2MnO3·0.5LiCo0.5Mn0.5O2富锂锰基正极材料。利用X射线衍射、场发射扫描电镜、透射电镜、X射线光电子能谱仪、激光粒度分析仪和振实密度仪等测试表征了所制备材料的物相、形貌、元素价态和粒度分布。利用充放电测试仪对材料的电化学性能进行了测试。结果表明:在低搅拌转速条件下共沉淀法制备的样品呈规则球状形貌,球体是由许多棒状一次粒子聚集而成;在高搅拌转速条件下,所制备出的样品呈现较为分散的棒状形貌。低搅拌转速下所制备的球状颗粒样品展现出了更高的振实密度(1.7 g/cm3)和更优异的电化学性能:0.2 C倍率条件下首次放电比容量为233.8 mA·h/g,2 C/0.2 C放电比容量比值为62.2%,0.5 C循环100次容量保持率为90.8%,倍率性能和循环稳定性能优异。

基金项目:
国家自然科学基金项目(91834301,91534102,21271058),安徽省科技攻关项目(1501021013)。
作者简介:
参考文献:

 [1]SHI J L, XIAO D D, GE M, et al. High-capacity cathode material with high voltage for Li-ion batteries[J]. Adv Mater, 2018, 30(9): 1705575–1705583.

[2]刘燕燕, 刘道坦, 陈立泉. 锰基富锂正极材料Li1.2Ni0.2Mn0.59Co0.01O2 的首次充放电曲线分析[J]. 硅酸盐学报, 2015, 43(1): 8–13.
LIU Yanyan, LIU Daotan, CHEN Liquan. J Chin Ceram Soc, 2015, 43(1): 8–13.
[3]HU E, LYU Y, XIN H L, et al. Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes[J]. Nano Lett, 2016, 16(10): 5999–6007.
[4]KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. J Power Sources, 2015, 282: 299–322.
[5]LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling[J]. J Power Sources, 2001, 102: 294–301.
[6]KOYAMA Y, CHIN T E, RHYNER U, et al. Harnessing the actuation potential of solid-state intercalation compounds[J]. Adv Funct Mater, 2006, 16(4): 492-498.
[7]LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochem Solid St, 2001, 11(4): A191–A194.
[8]ZHENG J, MYEONG S, CHO W, et al. Li- and Mn-Rich cathode materials: challenges to commercialization[J]. Adv Energy Mater, 2017, 7(6): 1601284.
[9]PHAM H Q, KIM G, JUNG H M, et al. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(2): 1704690.
[10]LUO D, FANG S, TIAN Q, et al. Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries[J]. Nano Energy, 2016, 21: 198–208.
[11]LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chem Soc Rev, 2017, 46(10): 3006–3059.
[12]GUO B, ZHAO J, FAN X, et al. Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material[J]. Electrochim Acta, 2017, 236: 171–179.
[13]ZUO Y, LI B, JIANG N, et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 Superstructure[J]. Adv Mater, 2018: 1707255.
[14]李栋, 赖华, 罗诗健, 等. 富锂锰基层状正极材料的表面包覆改性[J]. 硅酸盐学报, 2017, 45(7): 904–915.
LI Dong, LAI Hua, LUO Shijian, et al. J Chin Ceram Soc, 2017, 45(7): 904–915.
[15]MA G, LI S, ZHANG W, et al. A General and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries[J].Angew Chem Int Ed , 2016, 55(11): 3667–71.
[16]WANG J, NIE P, XU G, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(4): 1704808.
[17]ABDELLAHI A, URBAN A, DACEK S, et al. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides[J]. Chem Mater, 2016, 28(11): 3659–3665.
[18]SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nat Mater, 2015, 14(2): 230–238.
[19]WU X, LI H, FEI H, et al. Facile synthesis of Li2MnO3 nanowires for lithium-ion battery cathodes[J]. New J Chem, 2014, 38(2): 584–587.
[20]AN J, SHI L, CHEN G, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. J Mate Chem A, 2017, 5(37): 19738–19744.
[21]YANG J, XIA Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3[J]. ACS Appl Mater Inte, 2016, 8(2): 1297–1308.
[22]FANG X, LIN F, NORDLUND D, et al. Atomic insights into the enhanced surface stability in high voltage cathode materials by ultrathin coating[J]. Adv Funct Mater, 2017, 27(7): 1602873.
[23]ERICKSON E M, SCLAR H, SCHIPPER F, et al. High-temperature treatment of Li-rich cathode materials with ammonia: Improved capacity and mean voltage stability during cycling[J]. Adv Energy Mater, 2017, 7(18): 1700708.
[24]赵世玺, 郭双桃, 邓玉峰, 等. Li2MnO3活化机理及其影响因素的研究进展[J]. 硅酸盐学报, 2017, 45(4): 495–503.
ZHAO Shixi, GUO Shuangtao, DENG Yufeng et al. J Chin Ceram Soc, 2017, 45(4): 495–503.
[25]ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nat Commun, 2017, 8(1): 2219–2231.
[26]LI B, YAN H, ZUO Y, et al. Tuning the reversibility of oxygen redox in lithium-rich layered oxides[J]. Chem Mater, 2017, 29(7): 2811–2818.
[27]XU B, FELL C R, CHI M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energ Environ Sci, 2011, 4(6): 2223–2233.
[28]YU X, LYU Y, GU L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Adv Energy Mater, 2014, 4(5): 1300950.
[29]ZHANG L, JIN K, WANG L, et al. High capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries[J]. J Alloy Compd, 2015, 638: 298–304.
[30]KUPPAN S, SHUKLA A K, MEMBRENO D, et al. Revealing anisotropic spinel formation on pristine Li- and Mn-rich layered oxide surface and its impact on cathode performance[J]. Adv Energy Mater, 2017, 7(11): 1602010.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com