首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
固体氧化物燃料电池双钙钛矿SmBaCoFeO5+δ阴极材料的结构与性能
作者:杜志鸿1 2 李科云1 赵海雷1 2 
单位:(1. 北京科技大学材料科学与工程学院 北京 100083 2. 新能源材料与技术北京市重点实验室 北京 100083) 
关键词:固体氧化物燃料电池 阴极 双钙钛矿 电化学性能 电导弛豫 
分类号:O646
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 通过柠檬酸硝酸盐燃烧法制备中温固体氧化物燃料电池(IT-SOFCs)双钙钛矿阴极材料SmBaCoFeO5+δ (SBCFO)粉体,并系统研究了该材料在中温段的晶体结构特征、热膨胀性能、离子–电子传输特性、电化学催化活性以及电池功率特性。结果表明:SBCFO在室温下为P mmm正交结构,在300 ℃时材料转变为P 4/mmm四方结构。SBCFO的热膨胀系数在25~200 ℃和200~900 ℃范围内分别为15.7×10–6 K–1和19.6×10–6 K–1。SBCFO阴极在600~800 ℃温度范围内电导率超过100 S/cm。在700,750,800和850 ℃时,空气(50 mL/min)气氛中,SBCFO/La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)/SBCFO对称电池极化电阻分为0.210,0.100,0.054和0.032 Ω?cm2。SBFCO双钙钛矿阴极氧还原反应的限速步骤是表面吸附氧分子解离成氧原子的过程。以SBCFO为阴极组装电解质支撑型单电池Ni-Gd0.1Ce0.9O2–δ/La0.4Ce0.6O2/LSGM(300 μm)/SBCFO,800 ℃时,其最大功率密度达到831 mW/cm2。

基金项目:
国家重点研发计划(2018YFB1502202);国家自然科学基金(U1637202, 21805006);中国博士后科学基金资助项目(2016M600041, 2018T110044);中央高校基本科研业务费专项资金资助(FRF-TP-16-033A1)。
作者简介:
参考文献:

 [1] SINGHAL S C. Solid oxide fuel cells for stationary, mobile, and military applications[J]. Solid State Ionics, 2002, 152–153: 405–410.

[2] BRETT D J, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008, 37: 1568–1578.
[3] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935–939.
[4] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414: 345–352.
[5] MOLENDA J, ?WIERCZEK K, ZAJ?C W. Functional materials for the IT-SOFC[J]. J Power Sources, 2007, 173(2): 657–670.
[6] TARANCÓN A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813. 
[7] SKINNER S J. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes[J]. Int J Inorg Mater, 2001, 3: 113–121. 
[8] JIANG S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review[J]. J Mater Sci, 2008, 43: 6799–6833.
[9] PELOSATO R, CORDARO G, STUCCHI D, et al. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review[J]. J Power Sources, 2015, 298: 46–67. 
[10] KIM J H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective[J]. J Mater Chem A, 2015, 3: 24195–24210.
[11] YOO S, JUN A, JU Y W, et al. Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells[J]. Angew Chem Int Ed, 2014, 53(48): 13064–13067.
[12] CHRONEOS A, YILDIZ B, TARANCÓN A, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations[J]. Energy Environ Sci, 2011, 4: 2774–2789.
[13] KIM J H, MANTHIRAM A.LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. J Electrochem Soc, 2008, 155: B385–B390.
[14] ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Mater, 2008, 56: 4876–4889.
[15] KIM J H, BAE J, CASSIDY M, et al. SmBaCo2O5+δand LnBa0.5Sr0.5Co2O5+δ, potential cathode materials for IT-SOFC[J]. ECS Transactions, 2009, 25(2): 2707–2715. 
[16] DU Z, YAN C, ZHAO H, et al. Effective Ca-doping in Y1−xCaxBaCo2O5+δ cathode materials for intermediate temperature solid oxide fuel cells[J]. J Mater Chem A, 2017, 5: 25641–25651.
[17] LARSON A C, DREELE R B, TOBY B. General structure analysis system-GSAS/EXPGUI[J]. Report LAUR, 1994: 748.
[18] TOBY B H. A graphical user interface for GSAS[J]. J Appl Crystallogr, 2001, 34: 210–213.
[19] AKSENOVA T V, GAVRILOVA L Y, YAREMCHENKO A A, et al. Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5+δ and SmBaCo2O5+δ[J]. Mater Res Bull, 2010, 45: 1288–1292.
[20] ZHAO L, SHEN J, HE B, et al. Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate- temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2011, 36: 3658–3665.
[21] AKSENOVA T V, GAVRILOVA L Y, TSVETKOV D S, et al. Crystal structure and physicochemical properties of layered perovskite-like phases LnBaCo2O5+δ[J]. Russ J Phys Chem A, 2011, 85: 427–432.
[22] WANF Z, PENG R, ZHANG W, et al. Oxygen reduction and transport on the La1−xSrxCo1−yFeyO3−δ cathode in solid oxide fuel cells: a first-principles study[J]. J Mater Chem A, 2013, 1: 12932–12940. 
[23] SUN C, HUI R, ROLLER J. Cathode materials for solid oxide fuel cells: a review[J]. J Solid State Electrochem, 2010, 14: 1125–1144. 
[24] HU B, WANG Y, ZHU Z, et al. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation[J]. J Mater Chem A, 2015, 3: 10296–10302. 
[25] GOPAL C B, HAILE S M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria[J]. J Mater Chem A, 2014, 2: 2405–2417. 
[26] AKANDE S O, BOULFRAD S, SCHWINGENSCHLÖGL U. Intrinsic defect processes and O migration in PrBa(Co/Fe)2O5.5[J]. J Mater Chem A, 2016, 4: 3560–3564. 
[27] CHEN D, RAN R, ZHANG K, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte[J]. J Power Sources, 2009, 188(1): 96–105. 
[28] TAKEDA Y, KANNO R, NODA M, et al. Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia[J]. J Electrochem Soc, 1987, 134: 2656–2661. 
[29] ESCUDERO M J, AGUADERO A, ALONSO J A, et al. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy[J]. J Electroanal Chem, 2007, 611(1–2): 107–116.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com