首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高镍三元正极材料容量衰减机理及改性方法
作者: 博1 张飞龙1  灵1  超1 李世友1 2 
单位:(1. 兰州理工大学石油化工学院 锂离子电池电解液材料工程实验室 兰州 730050  2. 中国科学院青海盐湖研究所 盐湖资源化学重点实验室 西宁 810001) 
关键词:高镍三元正极材料 相变 容量衰减 改性 锂离子电池 
分类号:TB321
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 高镍三元正极材料因高容量、高功率等优势已成为大型动力锂离子电池的首选正极材料。然而,高镍三元正极材料存在循环稳定性差、容量衰减快等缺点。最新研究指出阳离子混排、过渡金属元素析出、氧空位等是造成材料相变的直接原因,而界面膜、过充、微裂纹等能进一步加速材料的容量衰减;元素掺杂、表面包覆和材料复合等作为当下最主流的改性技术,能显著抑制材料的容量衰减。本文综述了高镍三元材料容量衰减机理以及改性研究的现状,同时对其今后的发展方向做出了展望。

基金项目:
国家自然科学基金(21566021,21766017);甘肃省科技重大专项(17ZD2GC011);甘肃省高等学校科技成果转化项目(2017D-04)。
作者简介:
参考文献:

 [1]YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathode for high-energy-density lithium-ion batteries[J]. J Mater Chem A, 2018, 6(9): 4126–4132.

[2]JIANG Q, GAO Y, PENG J, et al. Effects of polyvinyl alcohol on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material[J]. J Solid State Electr, 2018, 22(12): 3807–3813.
[3]HOU Q, CAO G, WANG P, et al. Carbon coating nanostructured - LiNi1/3Co1/3Mn1/3O2, cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries[J]. J Alloys Compounds, 2018, 30(747): 796–802.
[4]CUI X, AI L, MAO L, et al. Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer[J]. Ionics, 2019, 25(2): 411–419.
[5]ZHANG Q Y, SU Y F, CHEN L, et al. Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+, cation ordering towards cyclability improvements[J]. J Power Sources, 2018, 396: 734–741.
[6]XIAO Y, LIU T, LIU J, et al. Insight into the origin of Lithium/Nickel ions exchange in layered Li(NixMnyCoz)O2, cathode materials[J]. Nano Energy, 2018, 49: 77–85.
[7]WU F, TIAN J, SU Y, et al. Effect of Ni2+content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Appl Mater Inter, 2015, 7(14): 7702–7708.
[8]ZHENG J X, TENG G T, XIN C, et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2[J]. J Phys Chem Lett, 2017, 8(22): 5537–5542.
[9]HIDEYUKI K, TAKETOSHI M, TOSHIYUKI M, et al. Site-selective analysis of nickel substituted Li-Rich layered material: migration and role of transition metal at charging and discharging[J]. J Physi Chem C, 2018, 122(35): 20099–20107.
[10]ZHANG F, GENG T, PENG F, et al. New insights for the abuse tolerance behavior of LiMn2O4 under high cut-off potential conditions[J]. Chemelectrochem, 2019, 6(3): 731–740.
[11]TAEHOON K, ONO L K, NICOLE F, et al. Transition metal speciation as a degradation mechanism with the formation of solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathode[J]. J Mater Chem A, 2018, 6(29): 14449–14463.
[12]NAYAK P K, PENKI T R, MARKOVSKY B, et al. Electrochemical performance of Li and Mn-Rich cathodes in full cells with prelithiated graphite negative electrodes[J]. ACS Energy Lett, 2017, 2(3): 544–548.
[13]DIXXIT M, MARKOVSKY B, SCHIPPER F, et al. Origin of structural degradation during cycling and low thermal stability of Ni-Rich layered transition metal-based electrode materials[J]. J Phys Chem C, 2017, 121(41): 22628–22636.
[14]LIN Q, GUAN W, MENG J, et al. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54: 313–321.
[15]Yan P, Zheng J, Zhang J G, et al. Atomic resolution structural and chemical imagingrevealing the sequential migration of Ni, Co and Mn upon battery cycling of layered cathode[J]. Nano Lett., 2017, 17(6): 3946–3951.
[16]CUI X, FENG H, XUE Y, et al. Convenient synthesis and electrochemical performance investigation of nano-sized LiMn2O4[J]. J Mater Sci: Mater Electr, 2017, 28(12): 8529–8536.
[17]ROLAND J, MICHAEL M, FILIPPO M et al. Oxygen elease and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-Ion batteries[J]. J Electrochem Soc, 2017, 164(7): A1361–A1377.
[18]MIN K, SEO S, SONG Y, et al. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Phys Chem Chem Phys, 2017, 19(3): 1762–1769.
[19]LUO K, ROBERST M, HAO R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nat Chem, 2016, 8(7): 684–691.
[20]WANDT J, FREIBERG A T, OGRDNIK A, et al. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries[J]. Mater Today, 2018, 21(8): 825–833.
[21]FLORES E, VONRUTI N, NOVAK P, et al. Elucidation of LixNi0.8Co0.15Al0.05O2 redox chemistry by operando raman spectroscopy[J]. Chem Master, 2018, 30(14): 4694–4703.
[22]LI S Y, LIANG Y W, XIE J, et al. Compatibility between lithium difluoro (oxalate) borate-based electrolytes and Li1.2Mn0.54Ni0.13Co0.13O2, cathode for lithium-ion batteries[J]. J Electroanal Chem, 2018, 823: 688–696.
[23]MIN K, SEO S W, CHOI B, et al. Computational screening for design of optimal coating materials to suppress gas evolution in Li-ion battery cathodes[J]. ACS Appl Mater Inter, 2017, 9(21): 17822–17834.
[24]CHO D H, CHANG H, CHO W, et al. Effect of residual lithium compounds on layer Ni-Rich Li[Ni0.7Mn0.3]O2[J]. J Electrochem Soc, 2014, 161(6): A920–A926.
[25]LI C L, WANG P, LI S Y, et al. Active mechanism of the interphase film-forming process for an electrolyte based on a sulfolane solvent and a chelato-borate complexe[J]. ACS Appl Mater Inter, 2018, 10(30): 25744–25753.
[26]TIAN L Y, LIANG K, WEN X F, et al. Enhanced cycling stability and rate capability of LiNi0.8Co0.15Al0.05O2 cathode material by a facile coating method[J]. J Electroanal Chem, 2018, 812: 22–27.
[27]KWANG J P, BYUNG J C. Requirement of high lithium content in Ni-rich layered oxide material for Li ion batteries[J]. J Alloys Compounds, 2018, 766: 470–476.
[28]ZHAO D N, WANG P, ZHAO Q P, et al. Improvement of interfacial stability for LiNi0.5Mn1.5O4 cathode: insight into the effect and mechanism of additive with special structure[J]. Energy Technol, 2018, 6(12): 2450–2460.
[29]JUNG R, METZGER M, MAGLIA F, et al. Oxygen evolution and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-Ion batteries [J]. Electrochem Soc, 2017, 164(7): A1361–A1377.
[30]HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge [J]. J Chem Mater, 2014, 26(2): 1084–1092.
[31]QIAN K, LI Y, HE Y B, et al. Study on the reversible capacity loss of layered oxide cathode during low-temperature operation[J]. J Power Sources, 2017, 342: 24–30.
[32]WANG Q, SHEN C H, SHEN S Y, et al. Origin of structural evolution in capacity degradation for overcharged NMC622 via operando coupled investigation[J]. ACS Appl Mater Inter, 2017, 9(29): 24731–24742.
[33]CHEN X, JIA X, QU Y, et al. High-voltage performance of concentration-gradient Li[Ni0.6Co0.2Mn0.2]O2 layered oxide cathode materials for lithium batteries[J]. New J Chem, 2018, 42(8): 5868–5874.
[34]KOSTECKI R, MCLARNON F. Local-probe studies of degradation of composite LiNi0.8Co0.15Al0.05O2 cathodes in high-power Lithium-ion cells[J].Electrochem Solid St, 2004, 7(10): A380–A383.
[35]RYU H H, PARK K J, CHONG S Y, et al. Capacity fading of Ni-Rich Li[NixCoyMn1-x-y]O2(0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation[J]. Chem Mater, 2018, 30(3): 1155–1163.
[36]MIN JUNG C, KO D S, et al. High-performance and industrially feasible Ni-Rich layered cathode materials by integrating coherent Interphase[J]. ACS Appl Mater Inter, 2018, 10(24): 20599–20610.
[37]KIM U H, KUO L, KAGHAZCHI P, et al. Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries[J]. ACS Energy Lett, 2019, 4(2): 576–582. 
[38]SUN H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a Nickel-Rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chem Mater, 2017, 29(19): 8486–8493.
[39]XUE L, LI Y, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. J Alloys Compounds, 2018, 748: 561–568.
[40]SU Y F, YANG Y Q, CHEN L, et al. Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase[J]. Electrochim Acta, 2018, 292: 217–226.
[41]GAO S, ZHAN X, CHENG Y T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.2O2 positive electrode materials for Li-ion batteries[J]. J Power Sources, 2019, 410: 45–52.
[42]TAO C, XIANG L, HAO W, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. J Power Sources, 2018, 374: 1–11.
[43]KAMALIKA G, SWASTIK B, TRIDIP D, et al. Effect of cobalt content on the electrochemical properties and structural stability of NCA type cathode materials[J]. Phys Chem Chem Phys, 2018, 20(35): 22805–22817.
[44]ZHU J, LI Y J, XUE L, et al. Enhanced electrochemical performance of Li3PO4 modified Li [Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating[J]. J Alloys Compounds, 2019, 773: 112–120.
[45]DING Y, DENG B W, WANG HAO, et al. Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue[J]. J Alloys Compounds, 2019, 774: 451–460.
[46]YAN P F, ZHENG J M, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nat Energy, 2018, 3(7): 600–605.
[47]LIU W M, GUO H, QIN M L, et al. Effect of voltage range and BiPO4 coating on the electrochemical properties of LiNi0.8Co0.15Al0.05O2[J]. Chemistryselect, 2018, 3(26): 7660–7666.
[48]CHEN T, WANG F, LI X, et al. Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Appl Surf Sci, 2019, 465: 863–870.
[49]TAN C, LUO H, DU K, et al. Core-shell structured Li[(Ni0.9Co0.05Al0.05)0.6 (Ni0.4Co0.2Mn0.4)0.4]O2 cathode material for high-energy lithium ion batteries[J]. Ionics, 2018, 24(5): 1293–1304.
[50]LI Q, DANG R, CHEN M, et al. A synthesis method for long cycle life lithium-ion cathode material: ni-rich core-shell LiNi0.8Co0.1Mn0.1O2[J]. ACS Appl Mater Inter, 2018, 10(21): 17850–17860.
[51]LIANG M, SUN Y M, SONG D W, et al. Superior electrochemical performance of quasi-concentration-gradient LiNi0.8Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source[J]. Electrochim Acta, 2019, 300: 426–436.
[52]OUYANG H Y, LI X H, WANG Z X, et al. Improved electrochemical performance of LiNi0.8Co0.15Al0.5O2/LiMn1/3Ni1/3Co1/3O2 with core-shell structure synthesized by a coprecipitation and spray pyrolysis process[J]. Funct Mater Lett, 2018, 11(4): 1850083.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com