首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ca2+、Mg2+固溶Ba2SiO4:Eu2+荧光增强机理
作者:高明远1  岚1 2  雨1  锐1 
单位:(1. 南昌大学材料科学与工程学院 南昌 330031 2. 南昌大学江西省轻质高强结构材料重点实验室 南昌 330031) 
关键词:碱土离子 硫酸钡 晶体结构 固溶取代 离子价态 荧光增强 荧光粉 
分类号:TB332
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 采用高温固相法在还原气氛得到(Ba1–xMex)1.95SiO4:0.05Eu (Me=Ca, Mg)荧光粉。采用X射线衍射仪、场发射扫描电镜、元素分析仪、荧光光谱仪对样品进行分析,结果表明:Ca2+、Mg2+在Ba2SiO4相的固溶度分别为10%(摩尔分数,下同)和30%,其对应荧光粉比Ba2SiO4:Eu在紫外激发绿色荧光亮度有明显提高(365 nm激发下亮度为Ba2SiO4:Eu的110%、140%,254 nm激发下则为105%、125%)。(Ba1–xCax)1.95SiO4 (0.1<x≤0.3)为T相而非Ba2SiO4相,故离子半径与Ba2+更接近的Ca2+反而比Mg2+在Ba2SiO4相的固溶度更低;Ca2+、Mg2+在Ba2SiO4中固溶,使得晶格参数略微减小,且b比c减小更快,即Ca2+、Mg2+更倾向取代9配位Ba2+(II)而非10配位Ba2+(I);固溶有利于粉末结晶状况提高(衍射峰增强、半峰宽变窄)。Eu2+(I)比Eu2+(II)对绿光贡献更大,Ca2+、Mg2+可促进Eu2+(I)/Eu2+(II)比值提高。Eu4d高分辨光电子谱表明,Ca2+、Mg2+对Eu离子的价态无明显影响。由此可见,Ca2+、Mg2+固溶可提高Ba2SiO4相粉末结晶程度、促进Eu2+进入发光效率更高Ba2+(I)位置,同时不影响Eu2+的价态稳定性,是固溶提升Ba2SiO4:Eu荧光粉发光性能原因所在。

基金项目:
国家重点研发计划(2016YFB0701201,2016YFB0701203,2017YFB1103701);国家自然科学基金(11564025,51671101,51464034,51062003);江西省自然科学基金(20161ACB21003,20132BAB202010,2010GZW0016);江西省教育厅重点计划(GJJ150010)项目资助;南昌大学研究生创新专项基金(CX2019052)本科生创新创业训练项目(20190402352)。
作者简介:
参考文献:

 [1] Volhard M F, Jüstel T. The effect of X-ray exposure on Ba2SiO4:Eu3+[J]. Opt Commun, 2018, 410: 617–622.

[2] 符义兵, 何锦华, 梁超, 等. 全光谱照明LED中的蓝绿色荧光粉研究[J]. 发光学报, 2018, 39(9): 31–35.
FU Yibing, HE Jinhua, LIANG Chao, et al. J Lumin (in Chinese), 2018, 39(9): 31–35. 
[3] Xu S, Li P, Wang Z, et al. Luminescence and energy transfer of Eu2+/Tb3+/Eu3+ in LiBaBO3 phosphors with tunable-color emission[J]. J Mater Chem C, 2015, 3(35): 9112–9121.
[4] Clabau F, Rocquefelte X, Jobic S, et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+[J]. Chem Mater, 2005, 17: 3904–3912.
[5] Kim K B, Kim Y I, Chun H G, et al. Structural and optical properties of BaMgAl10O17:Eu2+ phosphor[J]. Chem Mater, 2002, 14: 5045–5052.
[6] Tang Y S, Hu S F, Lin C C, et al. Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes[J]. Appl Phys Lett, 2007, 90(15): 151108.
[7] Xia Y, Liu Y G, Huang Z, et al. Ca6La4(SiO4)2(PO4)4O2:Eu2+: a novel apatite green emitting phosphor for near-ultraviolet excited w-LED[J]. J Mater Chem C, 2016, 4(21): 4675–4683.
[8] Ji H, Huang Z, Xia Z, et al. New Yellow-Emitting Whitlockite-type Structure Sr1.75Ca1.25(PO4)2:Eu2+ phosphor for near-UV pumped white light-emitting devices[J]. Inorg Chem, 2014, 53(10): 5129–5135. 
[9] 潘政薇, 何洪, 宋秀峰, 等. LED用稀土Eu掺杂硅酸盐基荧光粉的研究进展[J]. 硅酸盐学报, 2009, 37(9): 1590–1596. 
PAN Zhengwei, HE Hong, SONG Xiufeng, et al. J Chin Ceram Soc, 2009, 37(9): 1590–1596.
[10] 孙亮. A3MgSi2O8:Eu2+,Mn2+(A=Ba、Sr、Ca)荧光体的结构调控及红光增强[D]. 天津: 天津理工大学, 2015. 
SUN Liang. Structural regulation and red light enhancement of A3MgSi2O8:Eu2+,Mn2+ (A=Ba, Sr, Ca) phosphors (in Chinese, dissertation). Tianjin: Tianjin University, 2015.
[11] Barry T L. Fluorescence of Eu2+-Activated phases in binary alkaline earth orthosilicate systems[J]. J Electrochem Soc, 1968, 115(11): 1181–1184.
[12] Zhang M, Wang J, Zhang Q H, et al. Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode (LED)[J]. Mater Res Bull, 2007, 42(1): 33–39.
[13] HU X, LI Z, XU X, et al. Enhancement of photoluminescence of Ba2SiO4:Eu2+ by co-doping of La3+ or Y3+[J]. J Rare Earths, 2009, 27(1): 47–49.
[14] Denault K A, Brgoch J, Gaultois M W, et al. Consequences of optimal bond valence on structural rigidity and improved luminescence properties in (SrxBa2–x)SiO4:Eu2+ orthosilicate phosphors[J]. Chem Mater, 2014, 26(7): 2275–2282.
[15] 何丽珠. Ba2SiO4:Eu2+基系列荧光粉的制备及构效关系研究[D]. 北京: 北京科技大学, 2018.
HE Lizhu. Preparation and structure-activity relationship of Ba2SiO4:Eu2+ phosphors (in Chinese, dissertation). Beijing: Beijing University of Science and Technology, 2018.
[16] 李飞, 夏志国. 固态照明用稀土荧光粉和无机量子点: 机遇与挑战[J]. 应用化学, 2018, 35(8): 859–870.
LI Fei, XIA Zhiguo. Chin J Inorg Chem (in Chinese), 2018, 35(8): 859–870.
[17] 王志军, 吴君楠, 李盼来, 等. Sr5Si2O7Cl4:Eu2+材料的发光特性[J]. 硅酸盐学报, 2010, 38(3): 431–435.
WANG Zhijun, WU Junnan, LI Panlai, et al. J Chin Ceram Soc, 2010, 38(3): 431–435.
[18] Xia Z, Ma C, Molokeev M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2 (Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor[J]. J Am Chem Soc, 2015, 137(39): 12494–12497.
[19] Zhang Y, Li X, Li K, et al. Crystal-site engineering control for the reduction of Eu3+ to Eu2+ in CaYAlO4: structure refinement and tunable emission properties[J]. ACS Appl Mater Interfaces, 2015, 7(4): 2715–2725.
[20] Fukuda K, Ito M, Iwata T. Crystal structure and structural disorder of (Ba0.65Ca0.35) 2SiO4[J]. J Solid State Chem, 2007, 180(8): 2305–2309.
[21] He L, Song Z, Jia X, et al. Consequence of optimal bonding on disordered structure and improved luminescence properties in T-phase (Ba, Ca)2SiO4:Eu2+ phosphor[J]. Inorg Chem, 2018, 57(7): 4146–4154.
[22] Dorenbos P. Systematic behaviour in trivalent lanthanide charge transfer energies[J]. J Phys: Condensed Matter, 2003, 15(49): 8417–8434.
[23] 马格林. 一种新的SiC外延材料质量评估方法[D]. 西安: 西安电子科技大学, 2011.
MA Gelin. A new method for quality evaluation of SiC epitaxial materials (in Chinese, dissertation). Xi’an: Xidian University of Electronic Technology, 2011.
[24] Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode[J]. Solid State Commun, 2005, 133(3): 187–190.
[25] Biswal R C, Biswas K. Novel way of phase stability of LSGM and its conductivity enhancement[J]. Int J Hydr Energy, 2015, 40(1): 509–518.
[26] Wang J M, Lin H, Huang Q M, et al. Structure and luminescence behavior of a single-ion activated single-phased Ba2Y3(SiO4)3F:Eu white-light phosphor[J]. J Mater Chem C, 2017, 5(7): 1789–1797.
[27] 姜贵君, 姜贵全, 林晓梅. 固溶体Ce0.8Eu0.2O2-δ的合成与表征[J]. 武汉理工大学学报, 2009(15): 15–17.
JIANG Guijun, JIANG Guiquan, LIN Xiaomei. J Wuhan Univ Technol (in Chinese), 2009(15): 15–17.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com