首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
5 ℃时掺低温早强剂水泥的早期水化及微观结构
作者: 丰1 2  银1 2 蔡跃波1 2  波1 2 宁逢伟1 2 
单位:(1. 南京水利科学研究院 南京 210029 2. 水文水资源与水利工程科学国家重点实验室 南京 210024) 
关键词:低温 早强 净浆 水化热 微观结构 
分类号:TQ172
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 以溴化钙(CaBr2)、溴化锂(LiBr)和三异丙醇胺(TIPA)三组分制备低温早强剂,研究低温下,早强剂对净浆强度、凝结时间、流动度的影响,并从水化热、产物微观结构等角度出发,探讨其作用机理。结果表明:5 ℃低温时,低温早强剂的掺入使净浆初、终凝时间均略有所缩短,可明显加快试件的强度发展,掺低温早强剂净浆1、3、7、28 d抗压强度较对比样分别提高291%、78%、62%和40%,3 d后各龄期强度已超对比样20 ℃时强度。低温下,低温早强剂使水泥水化诱导期缩短、加速期提前,最大放热速率较对比样增大78%,12 h、7 d累计放热量则分别增大227%和52%。低温早强剂可促进水泥初期水化反应,使试样中Ca(OH)2含量增加、水化程度增大,水化12 h产物中即有大量Ca(OH)2生成,且生成了含溴C-S-H凝胶和水化溴氧铝酸钙[Ca4Al2O6Br2·10H2O]产物。水化产物相互堆积,细化了水化初期(7 d前)试件的孔径,大孔数量明显减少,净浆1、7 d总孔隙率较对比样分别减小16%、31%,试样微观结构更加致密。

基金项目:
国家重点研发计划项(2018YFC0406702);国家自然科学基金项目(51739008);云南省交通运输厅行业科技攻关项目(云交科教[2016]56号);中央级公益性科研院所基本科研业务费专项(Y419004)。
作者简介:
参考文献:

 [1] 张超. 水泥基注浆材料早强剂的复配[J]. 科技风, 2010(22): 162–163.

ZHANG Chao. Technol Wind (in Chinese), 2010(22): 162–163.
[2] 杨波勇, 张金生, 李丽华, 等.早强剂的制备及评价[J]. 辽宁石油化工大学学报, 2012(3): 29–32.
YANG Boyong, ZHANG Jinsheng, LI Lihua, et al. J Liaoning Shihua Univ (in Chinese), 2012(3): 29–32.
[3] 丁庆军, 何良玉, 梁远博, 等. 超早强微膨胀水下灌浆料的研究[J]. 武汉理工大学学报(交通科学与工程版), 2014(3): 498–501.
DING Qingjun, HE Liangyu, LIANG Yuanbo, et al. J Wuhan Univ Technol (Trans Sci & Eng) (in Chinese), 2014(3): 498–501.
[4] 韩建国, 阎培渝. 碳酸锂对硫铝酸盐水泥水化特性和强度发展的影响[J]. 建筑材料学报, 2011, 14(1): 6–9.
HAN Jianguo, YAN Peiyu. J Build Mater (in Chinese), 2011, 14(1): 6–9.
[5] 詹镇峰, 陈峭卉, 李从波, 等. 一种混凝土复合超早强剂及其使用方法[P]. CN Patent, 201510894979.6, 2015-12-07.
ZHAN Zhenfeng, CHEN Qiaohui, LI Congbo, et al. A composite super-early strength agent for concrete and its application method (in Chinese). CN Patent, 201510894979.6, 2015-12-07.
[6] 陈子川. 低温混凝土早强剂[P]. CN Patent, 201110049598.X, 2011-03-02.
CHEN Zichuan. Low temperature concrete early strength agent (in Chinese). CN Patent, 201110049598.X, 2011-03-02.
[7] 王成文, 王瑞和, 陈二丁, 等. 锂盐早强剂改善油井水泥的低温性能及其作用机理[J]. 石油学报, 2011, 32(1): 140–144.
WANG Chengwen, WANG Ruihe, CHEN Erding, et al. Acta Petrol Sin (in Chinese), 2011, 32(1): 140–144.
[8] MATUSINOVI? T, ?URLIN D. Lithium salts as set accelerators for high alumina cement[J]. Cem Concr Res (in Chinese), 1993, 23(4): 885–895.
[9] 陈大川, 程超, 黄政宇. 几种外加剂组分对硫铝酸盐水泥性能的影响[J]. 铁道科学与工程学报, 2015(5): 1074–1082.
CHEN Dachuan, CHEN Chao, HUANG Zhengyu. J Rail Sci Eng (in Chinese), 2015(5): 1074–1082.
[10] 黄志松. 碳酸锂对硫铝酸盐水泥性能的影响[J]. 建筑技术, 2015, 46(S1): 81–82.
HUANG Zhisong. Arch Tech (in Chinese), 2015, 46(S1): 81–82.
[11] PING G U, BEAUDOIN J J. Lithium salt-based additives for earlystrength-enhancement of ordinary portland cement-high alumina cementpaste[J]. J Mater Sci Lett, 1997, 16(9): 696–698.
[12] 刘进强. 聚羧酸系减水剂与早强组分的复合性能研究[D]. 北京: 北京工业大学, 2008.
LIU Jinqiang. Research on the synergistic effect of polycarboxlate superplasticizer and hardening accelerants (in Chinese, dissertation). Beijing: Beijing University of Technology, 2008.
[13] AIAD I, MOHAMMED A A, ABO-EI-ENEIN S A. Rheological properties of cement pastes admixed with some alkanolamines[J]. Cem Concr Res, 2003, 33(1): 9–13.
[14] 刘慧. 三异丙醇胺对水泥水化及其性能的影响[D]. 长沙: 湖南大学, 2011.
LIU Hui. Effects of triisopropanolamine on hydration and properties of cement (in Chinese, dissertation). Changsha: Hunan University, 2011.
[15] 张云升, 范建平. 一种硅酸盐水泥混凝土的超早强剂[P]. CN Patent, 201510107861.4, 2015-03-11.
ZHANG Yunshen, FAN Jianping. A super early strength agent for portland cement concrete (in Chinese). CN Patent, 201510107861.4, 2015-03-11.
[16] 温盛魁. 低温早强水泥浆体系的研究[D]. 北京: 中国石油大学, 2008.
WEN Shengkui. Research on the system of low temperature and early strength cement (in Chinese, dissertation). Beijing: China University of Petroleum, 2008.
[17] 王培铭, 李楠, 徐玲琳, 等. 低温养护下硫铝酸盐水泥的水化进程及强度发展[J]. 硅酸盐学报, 2017, 45(2): 242–248.
WANG Peiming, LI Nan, XU Linglin, et al. J Chin Ceram Soc, 2017, 45(2): 242–248.
[18] ESCALANTE-GARCIAJ I, SHARP J H. Variation in the composition of C-S-H gel in Portland cement pastes cured at various temperatures[J]. J Am Ceram Soc, 2010, 82(11): 3237–3241.
[19] KJELLSEN K O, DETWILERR J, GJORV O E. Backscattered electron imaging of cement pastes hydrated at different temperatures[J]. Cem Concr Res, 1990, 20(2): 308–311.
[20] LOTHENBACHB, MATSCHEIT, MOSCHNER G, et al. Thermodynamic modeling of the effect of temperature on the hydration and porosity of portland cement[J]. Cem Concr Res, 2008, 38(1): 1–18.
[21] LOTHENBACH B, WINNEFELDF, ALDER C, et al. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes[J]. Cem Concr Res, 2007, 37(4): 483–491.
[22] GARTNER E, MYERS D. Influence of tertiary alkanolamines on portland cement hydration[J]. J Am Ceram Soc, 2010, 76(6): 1521–1530.
[23] 徐芝强, 李伟峰, 胡月阳, 等. 链烷醇胺对水泥水化过程及性能的影响[J]. 硅酸盐学报, 2016, 44(11): 1628–1635.
XU Zhiqiang, LI Weifeng, HU Yueyang, et al. J Chin Ceram Soc, 2016, 44(11): 1628–1635.
[24] KRSTULOVIC R, DABICP. A conceptual model of the cement hydration process[J]. Cem Concr Res, 2000, 30(5): 693–698.
[25] 阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006, 34(5): 555–559.
YAN Peiyu, ZHEN Feng. J Chin Ceram Soc (in Chinese), 2006(34): 555–559.
[26] 袁润章. 胶凝材料学[M]. 武汉: 武汉工业大学出版社, 1996.
YUAN Runzhang. Cementitious Material Science (in Chinese). Wuhan: Wuhan University of Technology Press, 1996.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com