首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
冻融循环下混凝土中氯离子传输研究进展
作者:姜文镪1 2 刘清风1 2 
单位:(1. 上海交通大学 海洋工程国家重点实验室 上海 200240  2. 大连理工大学工业装备结构分析国家重点实验室 辽宁大连 116023) 
关键词:混凝土 氯离子 冻融循环 物理性能损伤 保护措施 
分类号:TU528
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 钢筋混凝土结构遭受氯盐侵蚀和冻融循环的共同作用时,其耐久性能会迅速降低。本文针对冻融循环下混凝土中氯离子传输过程,从混凝土物理性能、氯离子传输性能和保护措施3个方面总结相关研究成果。冻融循环过程中混凝土损伤分为两个阶段,两阶段损伤理论可以较好描述冻融损伤初始和扩散阶段。结合实验可量化氯盐侵蚀和冻融循环双重作用下混凝土的损伤程度,冻融损伤和氯离子扩散系数之间的关系能够有效描述冻融循环对氯离子传输的加速效应,以此为基础可探究各影响因素对冻融循环下混凝土中氯离子传输性能的影响。但是目前的研究结果、规律多为实验室条件下获得,对于定量评估实际混凝土结构的寿命仍有局限性。最后介绍了3种常见的防护方法,分别是表面处理、电化学修复/防护技术以及添加掺合料,并对未来该领域的发展方向从实验、理论和模型三方面进行展望。

基金项目:
国家自然科学基金项目(51978396);中国科协青年人才托举计划(2018QNRC001)项目;上海市“青年科技启明星计划” (19QA1404700)项目。
作者简介:
参考文献:

 [1]OH B H, JANG S Y. Prediction of diffusivity of concrete based on simple analytic equations[J]. Cem Concr Res, 2004, 34(3): 463–480.

[2]SONG H W, LEE C H, ANN K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cem Concr Comp, 2008, 30(2): 113–121.
[3]YANG C C. On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials[J]. Cem Concr Res, 2006, 36(7): 1304–1311.
[4]LIU Y, SHI X. Ionic transport in cementitious materials under an externally applied electric field: Finite element modeling[J]. Constr Build Mater, 2012, 27(1): 450–460.
[5]CHEEWAKET T, JATURAPITAKKUL C, CHALEE W. Concrete durability presented by acceptable chloride level and chloride diffusion coefficient in concrete: 10-year results in marine site[J]. Mater Struct, 2014, 47(9): 1501–1511.
[6]QU F, NIU D T. Chloride ion diffusion behavior of concrete after freezing and thawing cycles[J]. Adv Mater Res, 2013, 671–674: 1652–1656.
[7]ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cem Concr Res, 2017, 100: 60–67.
[8]ŠEPS K, FLÁDR J, BROUKALOVÁ I. Resistance of recycled aggregate concrete to freeze-thaw and deicing salts[J]. Procedia Eng, 2016, 151: 329–336.
[9]FERREIRA M, LEIVO M, KUOSA H, et al. The influence of the freeze-thaw loading cycle on the ingress of chlorides in concrete[C]//Proc. Int. RILEM Conference on Materials, Systems and Structures in Civil Engineering, Segment on Frost Action in Concrete, RILEM Publications SARL, Lyngby, Denmark, 2016: 31–40.
[10]KUOSA H, FERREIRA R M, HOLT E, et al. Effect of coupled deterioration by freeze–thaw, carbonation and chlorides on concrete service life[J]. Cem Concr Comp, 2014, 47: 32–40.
[11]du p, yao y, wang l, et al. Mechanical damage model of concrete subject to freeze-thaw cycles coupled with bending stress and chloride attack[J]. Adv Mater Res, 2014, 936: 1342–1350.
[12]MA Z, ZHAO T, XIAO J, et al. Evaluation of rebar corrosion in reinforced concrete under freeze-thaw environment and protection measures[J]. Anti-corros Method Mater, 2016, 63(2): 128–136.
[13]GAO F, WANG Q, DENG H, et al. Coupled effects of chemical environments and freeze–thaw cycles on damage characteristics of red sandstone[J]. B Eng Geol Environ, 2016, 76(4): 1481–1490.
[14]杨全兵, 黄士元. 对混凝土结构抗冻融及盐冻侵蚀耐久性设计的建议[C]. 土建结构工程安全性与耐久性科技论坛. 2001.
[15]ZHAO J, CAI G, GAO D, et al. Influences of freeze–thaw cycle and curing time on chloride ion penetration resistance of Sulphoaluminate cement concrete[J]. Constr Build Mater, 2014, 53: 305–311.
[16]SAKULICH A R, BENTZ D P. Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles[J]. J Mater Civil Eng, 2012, 24(8): 1034–1042.
[17]LI B, MAO J, NAWA T, et al. Mesoscopic chloride ion diffusion model of marine concrete subjected to freeze-thaw cycles[J]. Constr Build Mater, 2016, 125: 337–351.
[18]AL GADHIB A H. Numerical simulation of chloride diffusion in RC structures and the implications of chloride binding capacities and concrete mix[J]. Int J Civ Environ Eng, 2010, 10(5): 19–28.
[19]CHUNG C W, SHON C S, KIM Y S. Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze–thaw cycles[J]. Constr Build Mater, 2010, 24(9): 1739–1745.
[20]ZHOU Z D, QIAO P Z. Durability of ultra-high performance concrete in tension under cold weather conditions[J]. Cem Concr Comp, 2018, 94: 94–106.
[21]李文婷, 孙伟, 蒋金洋. 疲劳荷载与环境因素耦合作用下混凝土损伤劣化研究进展[J]. 硅酸盐学报, 2009, 37(12): 2142–2149.
LI Wenting, SUN Wei, JIANG Jinyang. J Chin Ceram Soc, 2009, 37(12): 2142–2149.
[22]WEI J, WU X H, ZHAO X L. A damage model of concrete under freeze-thaw cycles[J]. Wuhan Univ Technol-Mater, Sci Ed, 2003, 18(3): 40–42.
[23]NILI M, AZARIOON A, HOSSEINIAN S M. Novel internal-deterioration model of concrete exposed to freeze-thaw cycles[J]. J Mater Civil Eng, 2017, 29(9): 04017132.
[24]余红发, 孙伟, 麻海燕, 等. 基于损伤演化方程的混凝土寿命预测方法[J]. 建筑科学与工程学报, 2012, 29(1): 1–7.
YU Hongfa, SUN Wei, MA Haiyan, et al. J Archit Civil Eng (in Chinese), 2012, 29(1): 1–7.
[25]LI B, MAO J, NAWA T, et al. Mesoscopic damage model of concrete subjected to freeze-thaw cycles using mercury intrusion porosimetry and differential scanning calorimetry (MIP-DSC)[J]. Constr Build Mater, 2017, 147: 79–90.
[26]GONG F, SICAT E, ZHANG D, et al. Stress analysis for concrete materials under multiple freeze-thaw cycles[J]. J Adv Concr Technol, 2015, 13(3): 124–134.
[27]Muttaqin H, Kouhei N, Yasuhiko S, et al. Stress-strain behavior in tension and compression of concrete damaged by freezing and thawing cycles[C]//International RILEM Workshop on Frost Resistance of Concrete. RILEM Publications SARL, 2002: 335–342. 
[28]WANG Z, ZENG Q, WANG L, et al. Corrosion of rebar in concrete under cyclic freeze–thaw and chloride salt action[J]. Constr Build Mater, 2014, 53: 40–47.
[29]ZHANG X, WANG L, ZHANG J. Mechanical behavior and chloride penetration of high strength concrete under freeze-thaw attack[J]. Cold Reg Sci Technol, 2017, 142: 17–24.
[30]SUN W, MU R, LUO X, et al. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete[J]. Cem Concr Res, 2002, 32(12): 1859–1864.
[31]ZHANG P, CONG Y, VOGEL M, et al. Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation[J]. Constr Build Mater, 2017, 148: 113–121.
[32]郝潞岑, 刘元珍, 高宇璇, 等. 氯盐侵蚀和冻融循环耦合作用下保温混凝土的耐久性[J]. 广西大学学报:自然科学版, 2018(4): 1562–1568. 
HAO L C, LIU Y Z, GAO Y X, et al. J Guangxi Univ: Nat Sci (in Chinese), 2018(4): 1562–1568.
[33]王萧萧, 申向东, 王海龙, 等. 盐蚀-冻融循环作用下天然浮石混凝土的抗冻性[J]. 硅酸盐学报, 2014, 42(11): 1414–1421.
WANG Xiaoxiao, SHEN Xiangdong, WANG Hailong, et al. J Chin Ceram Soc, 2014, 42(11): 1414–1421
[34]罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1–14, 43.
LUO Daming, NIU D T, SU L, et al. Eng Plast Appl (in Chinese), 2019, 36(1): 1–14, 43.
[35]WANG Z D, YAO Y, WANG L. Research on the apparent thermal expansion coefficient of concrete subject to freeze-thaw cycles and chloride salt attack[J]. Adv Mater Res, 2012, 446–449: 3304–3310.
[36]王振地, 姚燕, 王玲. 冻融循环与氯盐侵蚀作用下混凝土变形和损伤分析[J]. 硅酸盐学报, 2012, 40(8): 1133–1138. 
WANG Z D, YAO Y, WANG L. J Chin Ceram Soc, 2012, 40(8): 1133–1138.
[37]PENTTALA V. Surface and internal deterioration of concrete due to saline and non-saline freeze–thaw loads[J]. Cem Concr Res, 2006, 36(5): 921–928.
[38]AMINI B, TEHRANI S S. Combined effects of saltwater and water flow on deterioration of concrete under freeze–thaw Cycles[J]. J Cold Reg Eng, 2011, 25(4): 145–161.
[39]MAO J Z, ZHANG Z Y, LIU Z M, et al. Damage analysis of concrete subjected to freeze-thaw cycles and chloride ion erosion[J]. Key Eng Mater, 2011, 488–489: 464–467.
[40]YU H, MA H, YAN K. An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life[J]. Constr Build Mater, 2017, 137: 104–116.
[41]宋玉普, 商怀帅, 张众, 等. 冻融循环后引气混凝土双轴破坏准则研究[J]. 工程力学, 2007, 24(6): 134–141.
Song Y P, SHANG H S, ZHANG Z, et al. J Eng Plast Appl (in Chinese), 2007, 24(6): 134–141
[42]李犇, 毛继泽, 吕建福, 等. 冻融循环作用下混凝土介观损伤的研究[C]. 中国硅酸盐学会混凝土与水泥制品分会第九届理事会成立大会暨第十一届全国高性能混凝土学术研讨会. 2015.
[43]赵铁军, 朱金铨, 冯乃谦. 混凝土孔隙分析中的表征参数[C]. 全国水泥基复合材料科学与技术学术讨论会. 1999.
[44]李芳. 混凝土损伤对氯离子渗透性影响研究综述[J]. 低温建筑技术, 2017(5): 7–10.
LI F. J Low Temp Archit Technol (in Chinese), 2017(5): 7–10.
[45]慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]南京: 东南大学; 2000.
MU R. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution (in Chinese, dissertation). Nan jing: Southeast University, 2000.
[46]张鹏, 刘庆, 耿文超, 等. 水和氯离子在砂浆中的迁移规律[J]. 硅酸盐学报, 2017, 46(2): 67–73.
ZHANG P, LIU Q, GENG W C, et al. J Chin Ceram Soc (in Chinese), 2017, 46(2): 67–73.
[47]陈月顺, 齐国霖, 吴伟. 混凝土在氯离子侵蚀和冻融耦合作用下的研究[J]. 建筑技术开发, 2012, 39(2): 45–48.
[48]李毅, 王显利, 马德宝, 等. 混凝土冻融损伤后的氯离子浓度分布预测[J]. 北华大学学报(自然), 2009, 10(2): 153–155.
LI Y, WANG X L, MA D B, et al. J Beihua Univ: Nat Sci (in Chinese), 2009, 10(2): 153–155.
[49]CHEN S J, SONG X B, LIU X L. Experimental research on chloride ingress into concrete exposed to freeze-thaw cycles[J]. Appl Mech Mater, 2013, 357–360: 621–625.
[50]BANTHIA N, MINDESS S. Effect of Early Freezing on Permeability of Cement Paste[J]. J Mater Civil Eng, 1989, 1(3): 119–132.
[51]YANG L, SUN W, LIU C, et al. Water absorption and chloride ion penetrability of concrete damaged by freeze-thawing and loading[J]. J Wuhan Univ Technol, 2017, 32(2): 330–337.
[52]何世钦, 贡金鑫, 赵国藩. 冻融循环下混凝土中氯离子的扩散性[J]. 水利水运工程学报, 2004, 4: 32–36.
HE S Q, GONG J X, ZHAO G F. J Hydro-sci Eng (in Chinese), 2004, 4: 32–36.
[53]王学军. 不同应力水平作用下混凝土碳化及抗冻性能研究[J]. 新型建筑材料, 2017,44(11): 44–47.
WANG X J. New Build Mater (in Chinese), 2017,44(11): 44–47.
[54]李长成, 闫洁, 李崴. 寒区盐渍土环境下混凝土的破坏机理研究[J]. 低温建筑技术, 2018(2): 13–17.
LI C C, YAN J, LI W. J Low Temp Archit Technol (in Chinese), 2018(2): 13–17.
[55]WITTMANN F H, ZHANG P, ZHAO T. Influence of combined environmental loads on durability of reinforced concrete structures[J]. Restor Build Monu, 2006, 12(4): 349–362.
[56]MARDANI AGHABAGLOU, ALI, et al. Freeze–thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack[J]. Appl Clay Sci, 115(2015): 179–188.
[57]吕健, 余亮, 龙海波, 等. 复杂环境下钢筋混凝土抗盐侵蚀性能[J]. 混凝土与水泥制品, 2017(12): 23–26.
LV J, YU L, LONG H B, et al. J Chin Concr Cem Prod (in Chinese), 2017(12): 23–26.
[58]李彦军. 盐碱-冻融环境下桥梁用混凝土耐久性分析[J]. 混凝土与水泥制品, 2019(5): 22–25.
LI Y J. J Chin Concr Cem Prod (in Chinese), 2019(5): 22–25.
[59]王孟然. 冻融循环作用下氯离子侵蚀混凝土过程研究[D]. 南京: 东南大学, 2017.
WANG M R. Study on chloride erosion in concrete under freeze-thaw cycle (in Chinese, dissertation). Nanjing: Southeast University, 2017.
[60]WANG L, UEDA T. Mesoscopic simulation of chloride ions diffusion in frost-damaged concrete[J]. Int J Model Ident Control, 2009, 7(2): 148–154.
[61]WANG L, UEDA T. Mesoscale Modeling of Chloride Penetration in Unsaturated Concrete Damaged by Freeze-Thaw Cycling[J]. J Mater Civil Eng, 2014, 26(5): 955–965.
[62]王军强. 混凝土中冻融循环和氯离子侵蚀的耦合效应试验研究[J]. 混凝土, 2008(11): 29–31.
WANG J Q. Concrete (in Chinese), 2008(11): 29–31.
[63]洪锦祥, 缪昌文, 黄卫. 冻融损伤对混凝土氯离子扩散性能的影响[J]. 混凝土, 2006(1): 36–38.
HONG J X, MIAO C W, HUANG W. J Concr (in Chinese), 2006(1): 36–38.
[64]刘金亮, 贾艳敏, 王佳伟, 等. 季冻区盐冻作用下结构氯离子侵蚀耐久寿命预测[J]. 哈尔滨工程大学学报, 2018, 39(10): 41–48.
LIU J L, JIA Y M, WANG J W, et al. J Harbin Eng Univ (in Chinese), 2018, 39(10): 41–48.
[65]JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Constr Build Mater, 2018, 179: 553–565.
[66]JIANG W Q, SHEN X H, HONG S X, et al. Binging capacity and diffusivity of concrete subjected to freeze-thaw and chloride attack: A numerical study[J]. Ocean Eng, 2019, 186C: 106093.
[67]HOSEINI M, BINDIGANAVILE V, BANTHIA N. The effect of mechanical stress on permeability of concrete: A review[J]. Cem Concr Comp, 2009, 31(4): 213–220.
[68]DU X, JIN L, ZHANG R. Chloride diffusivity in saturated cement paste subjected to external mechanical loadings[J]. Ocean Eng, 2015, 95: 1–10.
[69]LIU Q F, YANG J, XIA J, et al. A numerical study on chloride migration in cracked concrete using multi-component ionic transport models[J]. Comp Mater Sci, 2015, 99: 396–416.
[70]GONG F, ZHANG D, SICAT E, et al. Empirical estimation of pore size distribution in cement, mortar, and concrete[J]. J Mater Civil Eng, 2014, 26(7): 04014023.
[71]YUAN J, LIU Y, LI H, et al. Experimental investigation of the variation of concrete pores under the action of freeze-thaw cycles[J]. Adv Mater Sci Eng, 2016, 161(6): 583–8.
[72]GAO F, WANG Q, DENG H, et al. Coupled effects of chemical environments and freeze–thaw cycles on damage characteristics of red sandstone[J]. Bull Eng Geol Environ, 2017, 76(4): 1–10.
[73]LIU Z, ZHANG Y, JIANG Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes[J]. Constr Build Mater, 2014, 53: 26–31.
[74]ZHANG P, LIU C, LI Q. Application of gray relational analysis for chloride permeability and freeze-thaw resistance of high-performance concrete containing nanoparticles[J]. J Mater Civil Eng, 2011, 23(12): 1760–1763.
[75]LIU J, XING F, DONG B Q. Microscopic mechanism of the diffusivity of concrete chloride ion[J]. Adv Mater Res, 2013, 773: 687–692.
[76]DU X, JIN L, MA G. A meso-scale numerical method for the simulation of chloride diffusivity in concrete[J]. Finite Elem Anal Des, 2014, 85: 87–100.
[77]洪雷, 唐晓东. 冻融循环及龄期对混凝土氯离子渗透性的影响[J]. 建筑材料学报, 2011, 14(2): 254–256.
HONG L, TANG X D. J Build Mater (in Chinese), 2011, 14(2): 254–256.
[78]危行财. 双向荷载、冻融循环及龄期对混凝土氯离子渗透性的影响研究[D]. 大连: 大连理工大学, 2014.
WEI X C. The research of the effect of two-way load、freezing-thawing cycles and curing age on chloride permeability of concrete (in Chinese, dissertation). Dalian: Dalian University of Technology, 2014.
[79]陈妤, 刘荣桂, 付凯. 冻融循环下海工预应力混凝土结构的耐久性[J]. 建筑材料学报, 2009, 12(1): 17–21.
CHEN Y, LIU J G, FU K. J Build Mater (in Chinese), 2009, 12(1): 17–21.
[80]余红发, 孙伟. 混凝土在多重因素作用下的氯离子扩散方程[J]. 建筑材料学报, 2002(3): 240–247.
YU H F, SUN W. J Build Mater (in Chinese), 2002(3): 240–247.
[81]LIU Q F, EASTERBROOK D, YANG J, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete[J]. Eng Struct, 2015, 86: 122–133.
[82]SHANE J D, MASON T O, JENNINGS H M, et al. Effect of the interfacial transition zone on the conductivity of Portland cement mortars[J]. J Am Ceram Soc, 2000, 83(5): 1137–1144. 
[83]JIANG J Y, SUN G W, WANG C H. Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials[J]. Constr Build Mater, 2013, 39: 134–138.
[84]ZHENG J J, XIONG F F, WU Z M, et al. A numerical algorithm for the ITZ area fraction in concrete with elliptical aggregate particles[J]. Mag Concr Res, 2009, 61(2): 109–117.
[85]SUN G, ZHANG Y, SUN W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete[J]. Constr Build Mater, 2011, 25(10): 3820–3831.
[86]ZHOU W, ZHAO C, LIU X, et al. Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action[J]. Constr Build Mater, 2017, 157: 117–131.
[87]SICAT E, GONG F, UEDA T, et al. Experimental investigation of the deformational behavior of the interfacial transition zone (ITZ) in concrete during freezing and thawing cycles[J]. Constr Build Mater, 2014, 65: 122–131.
[88]HOOTON R D, BENTZ D P, GARBOCZI E J, et al. Multi-Scale Microstructural Modeling of Concrete Diffusivity: Identification of Significant Varibles[J]. Cem Concr Agg, 1998, 20(1): 129.
[89]ZHENG J J, ZHOU X Z, WU Y F, et al. A numerical method for the chloride diffusivity in concrete with aggregate shape effect[J]. Constr Build Mater, 2012, 31: 151–156.
[90]E. SCHLANGEN, J.G.M VAN MIER. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J]. Mater Struct, 1992, 25(9): 534–542.
[91]ŠAVIJA B, LUKOVI? M, PACHECO J, et al. Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study[J]. Constr Build Mater, 2013, 44: 626–638.
[92]G LILLIU, J.G.M VAN MIER. 3D lattice type fracture model for concrete[J]. Eng Fract Mech, 2003, 70(7): 927–941.
[93]GRASSL P, HONG S W, BUENFELD N R. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar[J]. Cem Concr Res, 2010, 40(1): 85–93.
[94]ABYANEH S D, WONG H S, BUENFELD N R. Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach[J]. Comput Mater Sci, 2014, 87: 54–64.
[95]FENG G L, LI L Y, KIM B, et al. Multiphase modelling of ionic transport in cementitious materials with surface charges[J]. Comput Mater Sci, 2016, 111: 339–349.
[96]LIU Q F, EASTERBROOK D, LI L Y, et al. Prediction of chloride diffusion coefficients using multi-phase models[J]. Mag Concr Res, 2017, 69: 134–144.
[97]LIU Q F, EASTERBROOK D, YANG J, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete[J]. Eng Struct, 2015, 86: 122–133.
[98]LIU Q F, FENG GL, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates: a numerical study[J]. Compos Struct, 2018, 183: 371–380.
[99]TOPÇU ?B, BILIR T. Analysis of rubberized concrete as a three-phase composite material[J]. J Compos Mater, 2009, 43(11): 1251–1263.
[100]刘清风. 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报, 2018, 46(8): 1074–1080.
LIU Q F. J Chin Ceram Soc, 2018, 46(8): 1074–1080.
[101]XU W, CHEN H, LV Z. A 2D elliptical model of random packing for aggregates in concrete[J]. J Wuhan Univ Technol, 2010, 25(4): 717–720.
[102]应敬伟, 肖建庄. 再生骨料取代率对再生混凝土耐久性的影响[J]. 建筑科学与工程学报, 2012, 29(1): 56–62.
YING J W, XIAO J Z. J Archit Civil Eng (in Chinese), 2012, 29(01): 56–62.
[103]ABBAS A, FATHIFAZL G, ISGOR O B, et al. Durability of recycled aggregate concrete designed with equivalent mortar volume method[J]. Cem Concr Comp, 2009, 31(8): 555–563.
[104]LEI B, LI W, TANG Z, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution[J]. Constr Build Mater, 2018, 163: 840–849.
[105]ANDERS L. Chloride ingress data from field and laboratory exposure – Influence of salinity and temperature[J]. Cem Concr Comp, 2007, 29(2): 88–93.
[106]II J J V , THOMAS J J . Permeability and elastic modulus of cement paste as a function of curing temperature[J]. Cem Concr Res, 2012, 42(2): 440–446.
[107]BODDY A, BENTZ E, THOMAS M D A, et al. An overview and sensitivity study of a multimechanistic chloride transport model - Effect of fly ash and slag[J]. Cem Concr Res, 1999, 29(29): 827–837.
[108]TOMLINSON D, MORADI F, HAJILOO H, et al. Early age electrical resistivity behaviour of various concrete mixtures subject to low temperature cycling[J]. Cem Concr Comp, 2017, 83: 323–34.
[109]杨海成, 杜安民, 范志宏, 等. 温度对混凝土氯离子扩散性能的影响[J]. 水运工程, 2015(10): 20–26. 
YANG H C, DU A M, FAN Z H, et al. J Port Water Eng (in Chinese). 2015(10): 20–26.
[110]WU J, FAYE P N, ZHANG W, et al. Chloride diffusivity and service life prediction of RC columns with sustained load under chloride environment[J]. Constr Build Mater, 2018, 158: 97–107.
[111]WANG L, UEDA T. Mesoscale modelling of the chloride diffusion in cracks and cracked concrete[J]. J Adv Concr Technol, 2003, 9(3): 241–249.
[112]ŠAVIJA B, LUKOVI? M, SCHLANGEN E. Lattice modeling of rapid chloride migration in concrete[J]. Cem Concr Res, 2014, 61/62: 49–63.
[113]ŠAVIJA B, PACHECO J, SCHLANGEN E. Lattice modeling of chloride diffusion in sound and cracked concrete[J]. Cem Concr Comp, 2013, 42: 30–40.
[114]穆松, 刘建忠. 基于混凝土裂缝特征的氯离子传输性质研究进展[J]. 硅酸盐学报. 2015, 43(6): 829–838.
MU S, LIU J Z. J Chin Ceram Soc, 2015, 43(6): 829–838.
[115]元成方, 牛荻涛, 盖青山, 等. 考虑冻融损伤的钢筋混凝土桥梁氯离子侵蚀寿命预测研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(2): 256–260.
YUAN C F, NIU D T, GAI Q S, et al. J Xi’an Univ of Arch Tech: Nat Sci (in Chinese), 2010, 42(2): 256–260.
[116]陈浩宇, 李美丹, 余红发, 等. 复杂氯盐溶液和冻融循环作用下混凝土的氯离子扩散行为[J]. 中国港湾建设, 2018, 38(5): 32–35.
CHEN H Y, LI M D, YU H F, et al. J China Habour Eng (in Chinese), 2018, 38(5): 32–35.
[117]丁廉营. 盐冻环境下水工混凝土材料耐久性衰减规律研究[D]. 华北水利水电大学, 2017.
DING L Y. Study on the degradation rule of hydraulic concrete materials under salty solution frost (in Chinese, dissertation). Zhengzhou: North China University of Water Resources and Electric Power), 2017.
[118]杨全兵, 黄士元. 受冻地区混凝土的盐冻破坏[J]. 黑龙江交通科技, 1998(8): 25–28.
YANG Q B, HUANG S Y. J Commun Sci Technol Heilongjiang (in Chinese), 1998(8): 25–28. 
[119]孙红尧, 杨争, 孙高霞, 等. 硅烷憎水剂在钢筋混凝土防腐应用中的探讨[J]. 水利水运工程学报, 2013(4): 1–5.
SUN H Y, YANG Z, SUN G X, et al. J Hydro-sci Eng (in Chinese), 2013(4): 1–5. 
[120]苏卿, 任昭君, 赵铁军, 等. 渗透型涂料表面防护对钢筋锈蚀的影响[J]. 新型建筑材料, 2009, 36(10): 70–72.
SUN Q, REN Z J, ZHAO T J, et al. J New Build Mater (in Chinese), 2009, 36(10): 70–72.
[121]MA Z, ZHU F, ZHAO T. Effects of surface modification of silane coupling agent on the properties of concrete with freeze-thaw damage[J]. KSCE J Civ Eng, 2018, 22(2): 657–669. 
[122]BASHEER L, CLELAND D J. Freeze–thaw resistance of concretes treated with pore liners[J]. Constr Build Mater, 2006, 20(10): 990–998.
[123]侯和平, 张克震, 张淑芹. 海工混凝土防腐涂层防护技术研究[J]. 中国水利. 2009(14): 50–52.
HOU H P, ZHANG K Z, ZHANG S Q. J Chin Water Resour (in Chinese), 2009(14): 50–52. 
[124]高小建, 赵志曼, 孙文博. 钢筋混凝土电化学除氯原理与研究进展[J]. 材料导报, 2007, 21(5): 98–101.
GAO X J, ZHAO Z M, SUN W B. J Mater Rev (in Chinese), 2007, 21(5): 98–101.
[125]LIU Q F, XIA J, EASTERBROOK D, et al. Three-phase modelling of electrochemical chloride removal from corroded steel-reinforced concrete[J]. Constr Build Mater, 2014, 70: 410–427.
[126]MAO L X, HU Z, XIA J, et al. Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites[J]. Compos Struct, 2019, 207: 176–189.
[127]金伟良, 吴航通, 许晨, 等. 钢筋混凝土结构耐久性提升技术研究进展[J]. 水利水电科技进展, 2015, 35(5): 68–76.
JIN W L, WU H D, XU C, et al. J Adv Sci Technol Water Resour (in Chinese), 2015, 35(5): 68–76.
[128]蒋正武, 邢锋, 孙振平, 等. 电沉积法修复钢筋混凝土裂缝的基础研究[J]. 水利水电科技进展, 2007(3): 5–8. 
JIANG Z W, XING F, SUN Z P, et al. J Adv Sci Technol Water Resour (in Chinese), 2007(3): 5–8.
[129]刘桂凤, 陈正发, 张铁男, 等. 电沉积法修复钢筋混凝土裂缝试验研究[J]. 施工技术, 2017(12): 18–22.
LIU G F, CHEN Z F, ZHANG T N, et al. J Constr Technol (in Chinese), 2017(12): 18–22.
[130]王增忠, 朱玉仲. 混凝土建筑物的裂缝分析及其防护和处理[J]. 混凝土, 2001(4): 7–10.
WANG Z Z, ZHU Y Z. J Concrete (in Chinese), 2001(4): 7–10.
[131]许晨, 金伟良, 黄楠, 等. 双向电渗对钢筋混凝土的修复效果实验——保护层表面强度变化规律[J]. 浙江大学学报(工学版), 2015, 49(6): 1128–1138.
XU C, JIN W L, HUANG N, et al. J Zhejiang Univ: Eng Sci (in Chinese), 2015, 49(6): 1128–1138.
[132]金伟良,黄楠,许晨, 等. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版). 2014, 48(8): 1586–1594.
JIN W L, HUANG N, XU C, et al. J Zhejiang Univ Eng Sci (in Chinese), 2014, 48(8): 1586–1594.
[133]许晨, 金伟良, 章思颖. 氯盐侵蚀混凝土结构延寿技术初探Ⅰ——模拟孔隙液中6种胺类有机物阻锈性能分析[J]. 建筑材料学报. 2014, 17(4): 572–578.
XU C, JIN W L, ZHANG S Y. J Build Mater (in Chinese), 2014, 17(4): 572–578.
[134]GUO Y X, GONG J X. D egradation of bond between steel bar and freeze-thaw concrete after electrochemical chloride extraction[J]. J Cent South Univ Technol, 2010, 17(2): 388–393. 
[135]HOSSEINI A, KHALOU A R. Study of electrochemical chloride extraction as a non-destructive repair method: part 2[J]. Struct Elem Test Sampl, 2005, 247–255.
[136]FUNAHASHI M. Innovation - Cost Effective Cathodic Protection System for Concrete Structures[J]. Mater Perform, 2014, 53(11): 32–37.
[137]胡翔, 史才军, 李庆玲, 等. 矿物掺合料对水泥基材料孔溶液中氯离子浓聚的影响[J]. 硅酸盐学报, 2015, 43(4): 376–385. 
HU X, SHI C J, LI Q L, et al. J Chin Ceram Soc, 2015, 43(4): 376–385.
[138]吴凯, 施惠生, 徐玲琳, 等. 矿物掺合料调控界面过渡区微结构对混凝土力学性能的影响[J]. 硅酸盐学报, 2017, 45(5): 623–630.
WU K, SHI H S, XU L L, et al. J Chin Ceram Soc, 2017, 45(5): 623–630.
[139]IQBAA M F, LIU Q F, AZIM I, et al.Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming [J]. J Hazard Mater, 2020, 384:121322.
[140]GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement-based materials[J]. J Mater Sci, 1992, 27(8): 2083–2092.
[141]PANESAR D K, CHIDIAC S E. Capillary suction model for characterizing salt scaling resistance of concrete containing GGBFS[J]. Cem Concr Comp, 2009, 31(8): 570–576.
[142]WANG Y, AN M Z, YU Z R, et al. Durability of reactive powder concrete under chloride-salt freeze–thaw cycling[J]. Mater Struct, 2016, 50(1):18.
[143]WU H, LIU Z, SUN B, et al. Experimental investigation on freeze–thaw durability of Portland cement pervious concrete (PCPC)[J]. Constr Build Mater, 2016, 117: 63–71.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com