首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
波纹管法测试水泥基材料自收缩的关键问题综述
作者:冷发光 关青锋   周永祥 
单位:(1. 中国建筑科学研究院有限公司 北京 100013 2. 建研建材有限公司 北京 100013  3. 建筑安全与环境国家重点实验室 北京 100013) 
关键词:水泥基材料 自收缩 波纹管 体积法 长度法 
分类号:TU528.01
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 水泥基材料早期收缩变形的科学测试是正确评估开裂风险的基本前提,针对国内尚无统一的自收缩测试方法现状,本文从体积–长度转换系数、自收缩变形起点、浆体早期微膨胀特征、模具的摩擦、试件密封性、温度控制、测试装置等方面出发,分析了国内外以波纹管测试自收缩的研究进展,在此基础上梳理了已有研究中相对模糊的概念,并总结了波纹管方法和其他方法的对比研究,为今后在国内推广应用波纹管法提供若干建议。

基金项目:
国家重点研发计划(2017YFB0310100)。
作者简介:
参考文献:

 [1] TAZAWA E, MIYAZAWA S. Experimental study on mechanism of autogenous shrinkage of concrete[J]. Cem Concr Res, 1995, 8(25): 1633–1638.

[2] JENSEN O M, HANSEN P F. A dilatometer for measuring autogenous deformation in hardening portland cement paste[J]. Mater Struct, 1995, 28(7): 406–409.
[3] MORIN V, COHEN-TENOUDJI F, FEYLESSOUFI A, et al. Evolution of the capillary network in a reactive powder concrete during hydration process[J]. Cem Concr Res, 2002, 32(12): 1907–1914.
[4] SANT G, LURA P, WEISS J. Measurement of volume change in cementitious materials at early ages[J]. J Transp Res Board, 2006, 1979(1): 21–29.
[5] 肖江帆. 常规工艺下超高性能混凝土的制备及性能研究[D]. 长沙: 湖南大学, 2013.
XIAO Jiangfang. Study on the properties of ultra high performance concrete with common techniques (in Chinese, dissertation). Changsha: Hunan University, 2013.
[6] BAROGHEL-BOUNY V, MOUNANGA P, KHELIDJ A. Autogenous deformations of cement pastes: part ii. w/c effects, micro-macro correlations, and threshold values[J]. Cem Concr Res, 2006, 36(1): 123–136.
[7] LI Y, BAO J, GUO Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures[J]. Constr Build Mater, 2010, 24(10): 1855–1860.
[8] CHU I, KWON S, AMIN M, et al. Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model[J]. Constr Build Mater, 2012, 35: 171–182.
[9] PERSSON B, AVDELNINGEN F, LUND U, et al. Self-desiccation and its importance in concrete technology[J]. Mater Struct, 1997, 30(5): 293–305.
[10] YOO S, KOH K, KWON S, et al. Analysis technique for flexural behavior in rc beam considering autogenous shrinkage effect[J]. Constr Build Mater, 2013, 47: 560–568.
[11] 李鹏辉, 刘光廷, 高虎, 等. 自生体积变形试验方法研究及应用[J]. 清华大学学报(自然科学版), 2001, 41(11): 114–117.
LI Penghui, LIU Guangting, GAO Hu, et al. J Tsinghua Univ: Sci Technol (in Chinese), 2001, 41(11): 114–117.
[12] 张云升, 张国荣, 李司晨. 超高性能水泥基复合材料早期自收缩特性研究[J]. 建筑材料学报, 2014, 17(1): 19–23.
ZHANG Yunsheng, ZHANG Guorong, LI Sichen. J Build Mater (in Chinese), 2014, 17(1): 19–23.
[13] ASTM C1698 standard test method for autogenous strain of cement paste and mortar[S]. New York, ASTM, 2009.
[14] JENSEN O M, HANSEN P F. Autogenous deformation and rh-change in perspective[J]. Cem Concr Res, 2001, 31(12): 1859–1865.
[15] LURA P, JENSEN O M. Measuring techniques for autogenous strain of cement paste[J]. Mater Struct, 2007, 40(4): 431–440.
[16] 曾峥. 改性陶粒混凝土力学性能及收缩性能的影响研究[D]. 长沙: 湖南大学, 2018.
ZENG Zheng. Study on mechanical properties and shrinkage properties of modified ceramsite concrete (in Chinese, dissertation). Changsha: Hunan University, 2018.
[17] 田倩, JENSEN O M. 采用波纹管测试水泥基材料早期自收缩方  法[J]. 硅酸盐学报, 2009, 37(1): 39–45.
TIAN Qian, JENSEN O M. J Chin Ceram Soc, 2009, 37(1): 39–45.
[18] 朱建强, 邓敏, 马惠珠, 等. 水泥浆体早期的自收缩和干燥收缩[J]. 南京工业大学学报(自然科学版), 2007, 29(3): 30–33.
ZHU Jianqiang, DENG Min, MA Huizhu. J Nanjing Univ Nat Sci Ed (in Chinese), 2007, 29(3): 30–33.
[19] 葛晓丽, 刘加平, 王育江, 等. 超低水胶比及硅灰对水泥净浆早期自收缩的影响[J]. 混凝土与水泥制品, 2016(4): 1–4.
GE Xiaoli, LIU Jiaping, WANG Yujiang, et al. Chin Concr Cem Prod (in Chinese), 2016(4): 1–4.
[20] 施惠生, 郭晓潞, 黄小亚. 矿物外加剂及测试方法对硬化水泥浆体自收缩值的影响[J]. 水泥, 2010(6): 1–4.
SHI Huisheng, GUO Xiaolu, HUANG Xiaoya. Cement (in Chinese), 2010(6): 1–4.
[21] 刘永强. 掺膨胀剂HCSA的超高性能混凝土性能的研究[D]. 长沙: 湖南大学, 2014.
LIU Yongqiang. Research of performance of UHPC incorporating HCSA expansion agent (in Chinese, dissertation). Changsha: Hunan University, 2014.
[22] BOUASKERM, GRONDIN F, MOUNANGA P, et al. Improved measurement methods for autogenous shrinkage of cement mortars at very early age[Z]. Québec, Canada: 2006.
[23] BOUASKER M, MOUNANGA P, KHELIDJ A, et al. Free autogenous strain of early-age cement paste: metrological development and critical analysis[J]. Adv Cem Res, 2008, 20(2): 75–84.
[24] TAO J, WEI X, LUO Y. Comparison of non-contact autogenous shrinkage measurements and the stress ratio of capillary stress to compressive strength[J]. Constr Build Mater, 2019, 206: 226–235.
[25] MOHR B, HOOD K. Influence of bleed water reabsorption on cement paste autogenous deformation[J]. Cem Concr Res, 2010, 40(2): 220–225.
[26] HUANG H, YE G. Examining the “Time-zero” of autogenous shrinkage in high/ultra-high performance cement pastes[J]. Cem Concr Res, 2017, 97: 107–114.
[27] OSTERGAARD T, JENSEN O M. A thermal comparator sensor for measuring autogenous deformation in hardening portland cement paste[J]. Mater Struct, 2003, 36(264): 661–665.
[28] WYRZYKOWSKI M, HU Z, GHOURCHIAN S, et al. Corrugated tube protocol for autogenous shrinkage measurements: review and statistical assessment[J]. Mater Struct, 2017, 50(1): 57.
[29] ROZIERE E, DELSAUTE B, LOUKILI A, et al. Experimental assessment of autogenous shrinkage[Z]. 2015983–992.
[30] GAO P, ZHANG T, LUO R, et al. Improvement of autogenous shrinkage measurement for cement paste at very early age: corrugated tube method using non-contact sensors[J]. Constr Build Mater, 2014, 55: 57–62.
[31] JI T, ZHANG B, ZHUANG Y, et al. Effect of lightweight aggregate on early-age autogenous shrinkage of concrete[J]. Aci Mater J, 2014, 112(3). doi: 10.14359/51687229.
[32] ZHUANG Y, ZHENG D, NG Z, et al. Effect of lightweight aggregate type on early-age autogenous shrinkage of concrete[J]. Constr Build Mater, 2016, 120: 373–381.
[33] SNOECK D, JENSEN O M, BELIE N D. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials[J]. Cem Concr Res, 2015, 74: 59–67.
[34] WANG Z, LI G. Experimental method and prediction model for autogenous shrinkage of high performance concrete[J]. Constr Build Mater, 2013, 49: 400–406.
[35] WEISS J. Experimental determination of the ‘Time zero’, T0 (‘Maturity-Zero’, M0)[Z]. Haifa: 2002195–206.
[36] DARQUENNES A, STAQUET S, DELPLANCKE-OGLETREE M, et al. Effect of autogenous deformation on the cracking risk of slag cement concretes[J]. Cem Concr Compos, 2011, 33(3): 368–379.
[37] SANT G, LURA P, WEISS J. A discussion of analysis approaches for determining ‘Time-zero’ from chemical shrinkage and autogenous strain measurements in cement paste[C]//Int RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation. 2006: 375–383.
[38] MIAO C, TIAN Q, SUN W, et al. Water consumption of the early-age paste and the determination of “Time-zero” of self-desiccation shrinkage[J]. Cem Concr Res, 2007, 37(11): 1496–1501.
[39] LV Y, HUANG H, YE G, et al. Autogenous shrinkage of low water-binder ratio cement pastes with supplementary cementitious materials[Z]. Las Vegas, USA: 2016.
[40] 张君, 陈浩宇, 侯东伟. 水泥净浆、砂浆及混凝土早期收缩与内部湿度发展分析[J]. 建筑材料学报, 2011, 14(3): 287–292.
ZHANG Jun, CHEN Haoyu, HOU Dongwei. J Build Mater (in Chinese), 2011, 14(3): 287–292.
[41] 高原, 张君, 孙伟. 密封养护混凝土内部湿度与收缩的一体化试验与模拟[J]. 建筑材料学报, 2013, 16(2): 203–209.
GAO Yuan, ZHANG Jun, SUN Wei. J Build Mater (in Chinese), 2013, 16(2): 203–209.
[42] MOUNANGA P, BAROGHEL-BOUNY V, LOUKILI A, et al. Autogenous deformations of cement pastes:part i. temperature effects at early age and micro-macro correlations[J]. Cem Concr Res, 2006, 36(1): 110–122.
[43] 缪昌文, 田倩, 刘加平, 等. 基于毛细管负压技术测试混凝土最早期的自干燥效应[J]. 硅酸盐学报, 2007, 35(4): 509–516.
MIAO Changwen, TIAN Qian, LIU Jiaping, et al. J Chin Ceram Soc, 2007, 35(4): 509–516.
[44] MA Y, YANG X, HU J, et al. Accurate determination of the “Time-zero” of autogenous shrinkage in alkali-activated fly ash/slag system[J]. Compos Part B: Engineering, 2019, 177: 107367.
[45] 张蕊. 非洲干旱地区天然火山灰高性能混凝土内养护技术研究[D]. 北京: 北京交通大学, 2017.
ZHANG Rui. Study on internal curing technology of high performance concrete with natural volcanic ash in dry-zone of zone (in Chinese, dissertation). Beijing: Beijing Jiaotong University, 2017.
[46] 韩宇栋, 张君, 岳清瑞, 等. 现代混凝土收缩研究评述[J]. 混凝土, 2019(2): 1–12.
HAN Yudong, ZHANG Jun, YUE Qingrui, et al. Concrete ( in Chinese), 2019(2): 1–12.
[47] 张君, 侯东伟, 高原. 混凝土自收缩与干燥收缩的统一内因[J]. 清华大学学报(自然科学版), 2010, 50(9): 1321–1324.
ZHANG Jun, HOU Dongwei, GAO Yuan. J Tsinghua Univ: Sci Technol (in Chinese), 2010, 50(9): 1321–1324.
[48] 黄耀英, 蔡忍, 刘钰, 等. 不同水胶比高性能混凝土内部自干燥与干湿循环影响试验[J]. 硅酸盐通报, 2019, 38(2): 311–316.
HUANG Yaoying, CAI Ren, LIU Yu, et al. Bull Chin Ceram Soc (in Chinese), 2019, 38(2): 311–316.
[49] 张巍, 杨全兵. 混凝土收缩研究综述[J]. 低温建筑技术, 2003(5): 4–6.
ZHANG Wei, YANG Quanbing. Low Temp Constr Technol (in Chinese), 2003(5): 4–6.
[50] 张震. 减缩剂和内养护对低水灰比水泥石自收缩的影响及其协同作用[D]. 重庆: 重庆大学, 2017.
ZHANG Zhen. Single and combined effects of shrinkage-reducing admixture and internal curing on autogenous shrinkage of hardened cement pastes with low water-cement ratio (in Chinese, dissertation). Chongqing: Chongqing University, 2017.
[51] 高小建, 巴恒静, 马保国. 混凝土早期自收缩、强度与水泥水化率的关系[J]. 工业建筑, 2006, 36(2): 64–67.
GAO Xiaojian, BA Hengjing, MA Baoguo. Ind Construct (in Chinese), 2006, 36(2): 64–67.
[52] 许利惟, 郑建岚. 高性能混凝土早龄期自干燥收缩测量方法的研 究[J]. 福州大学学报(自然科学版). 2007(5): 725–730.
XU Liwei, ZHENG Jianlan. J Fuzhou Univ: Nat Sci Ed (in Chinese), 2007(5): 725–730.
[53] 祝瑜, 邓宏卫, 曾京生, 等. 混凝土自收缩测量方法的进展[J]. 低温建筑技术, 2010, 32(10): 7–9.
ZHU Yu, DENG Hongwei, ZENG Jingsheng, et al. Low Temp Constr Technol (in Chinese), 2010, 32(10): 7–9.
[54] 左义兵, 魏小胜. 粉煤灰水泥浆体的电阻率与化学收缩及自收缩的相互关系[J]. 重庆大学学报, 2015, 38(4): 45–54.
ZUO Yibing, WEI Xiaosheng. J Chongqing Univ (in Chinese), 2015, 38(4): 45–54.
[55] 庄华夏, 冯小忠, 韦华, 等. 一种非接触式多通道混凝土早龄期收缩测试设备的研发与应用[J]. 混凝土与水泥制品, 2018(4): 81–84.
ZHUANG Huaxia, FENG Xiaozhong, WEI Hua. Chin Concr Cem Prod (in Chinese), 2018(4): 81–84.
[56] SANT G, LOTHENBACH B, JUILLAND P, et al. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures[J]. Cem Concr Res, 2011, 41(3): 218–229.
[57] SENSALE G R, RIBEIROA B, GONCALVES A. Effects of RHA on autogenous shrinkage of portland cement pastes[J]. Cem Concr Compos, 2008, 30(10): 892–897.
[58] BAROGHEL-BOUNY V, MOUNANGA P, KHELIDJ A, et al. Autogenous deformations of cement pastes[J]. Cem Concr Res, 2006, 36(1): 123–136.
[59] HOLT E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages[J]. Cem Concr Res, 2005, 35(3): 464–472.
[60] MARUYAMA I, TERAMOTO A. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio[J]. Cem Concr Res, 2013, 50: 41–50.
[61] BJONTEGAARD O, SELLEVOLD E. Thermal dilation and autogenous deformation as driving forced to self-induced stresses in high performance concrete[D]. Norwegian University of Science and Technology, 1999.
[62] BJØNTEGAARD Ø, HAMMER T A, SELLEVOLD E J. On the measurement of free deformation of early age cement paste and concrete[J]. Cem Concr Compos, 2004, 26(5): 427–435.
[63] CHARRONJ P, MARCHAND J, BISSONNEETEB. Early-age deformations of hydrating cement systems: comparison of linear and volumetric shrinkage measurements[J]. Concr Sci Eng, 2001(3): 168–173.
[64] 管娟. 高性能水泥浆体早期自收缩[D]. 南京: 南京工业大学, 2005.
GUAN Juan. Early-age autogenous shrinkage of high performance cement pastes (in Chinese, dissertation). Nanjing: Nanjing University of Technology, 2005.
[65] 李国栋, 王宗林. 高性能混凝土板式构件的早期收缩特性及预测模型[J]. 土木建筑与环境工程, 2017, 39(1): 93–100.
LI Guodong, WANG Zonglin. J Civ Archit Environ Eng (in Chinese), 2017, 39(1): 93–100.
[66] 郑秀梅, 农国才, 张皓. 减缩剂与膨胀剂对UHPC收缩性能影响研究[J]. 混凝土, 2017(9): 76–79.
ZHENG Xiumei, NONG Guocai, ZHANG Hao. Concrete (in Chinese), 2017(9): 76–79.
[67] 程可佳. 碱矿渣陶粒混凝土的自收缩及抗裂性能研究[D]. 福州: 福州大学, 2016.
CHENG Kejia. Study on Autogenous shrinkage and crack resistance of alkali-activated slag ceramsite concrete (in Chinese, dissertation). Fuzhou, Fuzhou University, 2016.
[68] 江晨晖. 高性能混凝土早龄期体积变化与力学性能实验研究及评价[D]. 杭州: 浙江工业大学, 2016.
JIANG Chenhui. Experimental Investigations and evaluations on early-age volume changes and mechanical properties of high performance concrete (in Chinese, dissertation). Hangzhou: Zhejiang University of Technology, 2016.
[69] RAJAYOGAN V. Autogenous shrinkage in cementitious systems[D]. Canberra: The University of New South Wales, 2009.
[70] 张彬彬, 季韬, 林旭健. 钢纤维掺量对陶粒混凝土早期自收缩的影响[J]. 福州大学学报(自然科学版), 2015, 43(3): 377–381.
ZHANG Binbin, JI Tao, LIN Xujian. J Fuzhou Univ: Nat Sci Ed (in Chinese), 2015, 43(3): 377–381.
[71] LU T. Autogenous shrinkage of early age cement paste and mortar[D]. Delft University of Technology, 2019.
[72] 曾剑波. 聚合物改性水泥砂浆收缩性能研究[D]. 长沙: 湖南大学, 2017.
ZENG Jianbo. Study on shrinkage of polymer modified cement mortar [dissertation, in Chinese]. Changsha: Hunan University, 2017.
[73] 曾玮. 减缩剂与聚丙烯纤维对陶粒混凝土收缩性能的影响研究[D]. 长沙: 湖南大学, 2017.
ZENG Wei. Influence of shrinkage-reducinng agent annd polypropylene fiber on shrinkage of ceramsite concrete (in Chinese, dissertation). Changsha: Hunan University, 2017.
[74] 吕奎喜. 内养护对自密实混凝土收缩及渗透性的影响[D]. 长沙: 湖南大学, 2015.
LV Kuixi. Effect of internal curing on the shrinkage and permeability of self-compacting concrete (in Chinese, dissertation). Changsha: Hunan University, 2015.
[75] 雷晓亮. 减缩剂与聚丙烯纤维对加气混凝土收缩性能的影响研究[D]. 长沙: 湖南大学, 2018.
LEI Xiaoliang. Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of aerated concrete (in Chinese, dissertation). Changsha: Hunan University, 2018.
[76] SANT G, LURA P, WEISS J. Measurement of volume change in cementitious materials at early ages: review of testing protocols and interpretation of results[R]. Transportation Research Board, 2006.
[77] WUERPEL C. Laboratory studies of concrete containing air-entraining admixtures[J]. J Am Concr Inst, 1946, 42(2): 305–360.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com