首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
石墨相四氮化三碳/氧化锌复合材料的制备及其气敏性能
作者: 艳1 刘俊松1 蒋余芳1  奇1 储向峰1 梁士明2 白林山1 董永平1 Ali akhtar1 
单位:(1. 安徽工业大学化学化工学院 安徽 马鞍山 243002 2. 山东临沂大学材料科学学院 山东 临沂 276005) 
关键词:石墨相四氮化三碳 乙酸 气敏性能 氧化锌 水热法 
分类号:O649;O614.27
出版年,卷(期):页码:2020,48(2):0-0
DOI:
摘要:

 采用水热法制备了一系列石墨相四氮化三碳-氧化锌(g-C3N4-ZnO)复合材料,并使用X射线衍射、高分辨透射电子显微镜、Fourier变换红外光谱和X射线光电子能谱对复合材料进行了表征,研究了g-C3N4-ZnO复合材料的气敏性能。结果表明:加入9% (质量分数,下同)g-C3N4所制备的g-C3N4-ZnO复合材料在300 ℃对乙酸具有较好的气敏选择性和较高的气敏灵敏度,对10–3乙酸气体灵敏度达到260.4,响应和恢复时间分别为6 s和5 s,对10–6乙酸气体灵敏度可达到1.8。

基金项目:
国家自然科学基金(61971003)项目。
作者简介:
参考文献:

 [1] GALSTYAN V, COMINI E, BARATTO C, et al. Nanostructured ZnO chemical gas sensors[J]. Ceram Int, 2015, 41(10): 14239–14244.

[2] HAN B, LIU X, XING X, et al. A high response butanol gas sensor based on ZnO hollow spheres[J]. Sens Actuators B: Chem, 2016, 237: 423–430.
[3] LATYSHEV V M, BERESTOK T O, OPANASYUK A, et al. Nanostructured ZnO films for potential use in LPG gas sensors[J]. Solid State Sci, 2017, 67: 109–113.
[4] MIRZAEI A, PARK S, KHEEL H, et al. ZnO-capped nanorod gas sensors [J]. Ceram Int, 2016, 42: 6187–6197.
[5] LÓPEZ R, VIGUERAS-SANTIAGO E, VILCHIS-NESTOR A R, et al. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures[J]. Results Phys, 2017, 7: 1818–1823.
[6] LI D, QIN L, ZHAO P, et al. Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection[J]. Sens Actuators B: Chem, 2018, 254: 834–841.
[7] WONGRAT E, CHANLEK N, CHUEAIARROM C, et al. Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb[J]. Ceram Int, 2017, 43: 8557–8566.
[8] TIAN S, ZHANG Y, ZENG D, et al. Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties[J]. Phys Chem Phys, 2015, 17: 27437–27445.
[9] HU Y, LI L, ZHANG L, et al. Dielectric barrier discharge plasma-assisted fabrication of g-C3N4-Mn3O4 composite for high-performance cataluminescence H2S gas sensor[J]. Sens Actuators B: Chem, 2017, 239: 1177–1184.
[10] ZHANG Y, ZHANG D, GUO W, et al. The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance[J]. J Alloy Compd, 2016, 685: 84–90.
[11] CAO J, QIN C, WANG Y, et al. Synthesis of g-C3N4 nanosheet modified SnO2 composites with improved performance for ethanol gas sensing[J]. RSC Adv, 2017, 7: 25504–25511.
[12] ZHAI J, TAO W, WANG C, et al. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature[J]. Appl Surf Sci, 2018, 441: 317–323.
[13] WANG M, JU P, LI J J, et al. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. ACS Sustain Chem Eng, 2017, 5: 7878–7886.
[14] CHU X, CHEN T, ZHANG W, et al. Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method[J]. Sen Actuators B: Chem, 2009, 142: 49–54.
[15] LV H, JI G, YANG Z, et al. Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO[J]. J Colloid Interface Sci, 2015, 450: 381–387.
[16] ADHIKARI S P, PANT H R, KIM H J, et al. Deposition of ZnO flowers on the surface of g-C3N4 sheets via hydrothermal process[J]. Ceram Int, 2015, 41: 12923–12929.
[17] WANG S, LI D, SUN C, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Appl Catal B: Environ, 2014, 144: 885–892.
[18] LIU Y, HU Y, ZHOU M, et al. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Appl Catal B: Environ, 2012, 125: 425–431.
[19] ANAND K, SINGH O, SINGH M P, et al. Hydrogen sensor based on graphene/ZnO nanocomposite[J]. Sens Actuators B: Chem, 2014, 195: 409–415. 
[20] MA J, TAN X, YU T, et al. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity[J]. Int J Hydrogen Energ, 2016, 41(6): 3877–3887.
[21] WANG X J, YANG W Y, LI F T, et al. In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties[J]. Ind Eng Chem Res, 2013, 52(48): 17140–17150.
[22] XUE J, MA S, ZHOU Y, et al. Fabrication of porous g-C3N4/Ag/Fe2O3 composites with enhanced visible light photocatalysis performance[J]. RSC Adv, 2015, 5: 58738–58745.
[23] CHENG L, MA S Y, WANG T T, et al. Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2 nanoparticles prepared by electrospinning[J]. Mater Lett, 2014, 137: 265–268.
[24] MA L, MA S Y, QIANG Z, et al. Preparation of Co-doped LaFeO3 nanofibers with enhanced acetic acid sensing properties[J]. Mater Lett, 2017, 200(10): 47–50.
[25] JIN W X, MA S Y, TIE Z Z, et al. Synthesis of hierarchical SnO2 nanoflowers with enhanced acetic acid gas sensing properties[J]. Appl Surf Sci, 2015, 353: 71–78.
[26] WANG T T, MA S Y, CHENG L, et al. Performance of 3D SnO2 microstructure with porous nanosheets for acetic acid sensing[J]. Mater Lett, 2015, 142: 141–144.
[27] WANG C, MA S, SUN A, et al. Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor[J]. Sens Actuators B: Chem, 2014, 193: 326–333.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com