首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Sm3+掺杂SrBi4Ti4O15–Bi4Ti3O12压电陶瓷的结构、电学和光致发光性能
作者:  江向平   黄枭坤     苏春阳 陈云婧 
单位:(景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷材料重点实验室 江西 景德镇 333001) 
关键词:压电陶瓷 Raman光谱 晶格畸变 光致发光 
分类号:TQ174.1
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用固相法制备Sm3+掺杂SrBi8–xSmxTi7O27 (SBT–BIT–xSm3+, 0≤x≤0.50)共生铋层状陶瓷,研究了不同掺杂量的Sm3+对样品的结构、介电、压电以及光致发光性能的影响。结果表明:所有陶瓷样品均为单一的共生铋层状结构,XRD精修和Ramam结果显示Sm3+掺杂引起样品晶格畸变的减小,适量的Sm3+掺杂降低了介电损耗tanδ,提升了压电常数d33,当x=0.30时,综合电性能最佳:压电常数d33=16.3 pC/N,tanδ=0.90%。在407 nm近紫外光的激发下,SBT–BIT–xSm3+陶瓷样品在      598 nm处存在最强的红橙光发射,当x=0.15时,发光强度达到最佳,Sm3+掺杂SBT–BIT共生铋层状陶瓷在光-电多功能器件等领域中具有潜在的应用前景。

 Sm3+ doped SrBi8–xSmxTi7O27(SBT–BIT–xSm3+, 0≤x≤0.50) inter-growth bismuth layer–structured ceramics were prepared by a conventional solid-state method. The effect of Sm3+ doping on the structural, electrical and photoluminescence properties of SBT–BIT–xSm3+ ceramics were investigated. All the samples show a single inter–growth bismuth layer–structure. Based on the results by the Rietveld analysis and Raman spectroscopy, the lattice distortion decreases. The dielectric loss (tanδ) decreases and piezoelectric constant (d33) increases with the increase of Sm3+ doping content. SBT–BIT–xSm3+ ceramic with x of 0.30 exhibits an optimum electrical behavior, i.e., d33=16.3 pC/N, and tanδ=0.90%. Moreover, Under a near ultraviolet excitation at 407 nm, a most intense red orange emission appears at 598 nm in SBT–BIT–xSm3+ ceramics. The optimized emission intensity was obtained when x=0.15 for SBT-BIT-xSm3+ ceramic. The results show that Sm3+ doped SBT–BIT–xSm3+ inter–growth bismuth layer–structured ceramics have potential applications in the field of optoelectronic multifunctional devices.

基金项目:
国家自然科学基金(51762024, 51562014, 51862016, 51602135)、江西省自然科学基金(20171BAB216012)、江西省教育厅科技项目(GJJ170789, GJJ170804, GJJ180718, GJJ170794)资助。
作者简介:
参考文献:

 [1] PARK B H, KANG B S, BU S D, et al. Lanthanum substituted bismuth titanate for use in non-volatile memories[J]. Nature, 1999, 401: 682–684.

[2] WANG C M, WANG J F, ZHANG S, et al. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramic[J]. Phys Status Solidi-R, 2010, 3(2/3): 49–51. 
[3] CUMMINS S E. Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals[J]. J Appl Phys, 1968, 39(5): 2268.
[4] ZHOU Z Y, DONG X L, CHEN H, et al. Structural and electrical properties of W6+-doped Bi3TiNbO9 high-temperature piezoceramics[J]. J Am Ceram Soc, 2006, 89(5): 1756–1760.
[5] TAKAHASHI M, NOHUCHI Y, MIYAYAMA M. Effects of V-doping on mixed conduction properties of bismuth titanate single crystals[J]. Jpn J Appl Phys, 2003, 42(42): 6222–6225.
[6] WITHERS R L, THOMPSON J G, RAE A D. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6[J]. J Solid State Chem, 1991, 94(2): 404–417. 
[7] PARIDA G, BERA J. Electrical properties of niobium doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics[J]. Ceram Int, 2014, 40(2): 3139–3144.
[8] YI Z G, WANG Y, LI Y X, et al. Ferroelectricity in intergrowth Bi3TiNbO9–Bi4Ti3O12 ceramics[J]. J Appl Phys, 2006, 99(11): 319.
[9] NOGUCHI Y, MIYAYAMA M, KUDO T, et al. Ferroelectric properties of Bi4Ti3O12–SrBi4Ti4O15 ceramics[J]. Appl Phys Lett, 2000, 77(22): 3639–3641.
[10] PARIDA G, BERA J. Effect of La-substitution on the structure, dielectric and ferroelectric properties of Nb modified SrBi8Ti7O27 ceramics[J]. Mater Res Bull, 2015, 68(2015): 155–159.
[11] WANG X, XU C N, YAMADA H, et al. Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3, ceramics[J]. Adv Mater, 2005, 36(17): 1254–1258.
[12] ZHANG Q W, YAO Z, SUN H Q, et al. Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9, ferroelectrics[J]. J Eur Ceram Soc, 2017, 37(3): 955–966.
[13] PENG D F, WANG X S, XU C N, et al. Bright upconversion emission, increased Tc, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric Oxides[J]. J Am Ceram Soc, 2013, 96(1): 7.
[14] DIAO C L, LI H, CHEN Z, et al. Effect of samarium substitution on the dielectric and ferroelectric properties of BaBi4–xSmxTi4O15 ceramics[J]. Ceram Int, 2016, 42(1): 621–626.
[15] TELLIER J, BOULLAY P, MERCURIO D. Crystal structure of the Aurivillius phases in the system Bi4Ti3O12–PbTiO3[J]. Z Kristallogr, 2007, 222(5): 234–243.
[16] LUO Y H, JIANG X P, CHEN C, et al. Structural, electrical, and photoluminescence properties of Pr3+ doped Na0.25K0.25Bi2.5Nb2O9 bismuth layer-structure ceramics[J]. J Mater Sci–Mater El, 2017, 28(10): 7517–7524.
[17] CHAKRABARTI A, BERA J. Structure and relaxor behavior of BaBi4Ti4–xZrxO15 ceramics[J]. Curr Appl Phys, 2010, 10(2): 574–579.
[18] ZHU J, CHEN X B, HE J H, et al. Raman scattering investigations on lanthanum-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectries[J]. J Solid State Chem, 2005, 178: 2832–2837.
[19] WANG W, GU S P, MAO X P, et al. Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12– SrBi4Ti4O15[J]. J Appl Phys, 2007, 102: 024102.
[20] JIANG X A, JIANG X P, CHEN C, et al. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics[J]. J Am Ceram Soc, 2016, 99(4): 1332–1339.
[21] JIANG Y L, JIANG X P, CHEN C, et al. Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15–Bi4Ti3O12 inter-growth high temperature piezoceramics[J]. Ceram Int, 2017.
[22] BOKOLIA R, THAKUR O P, RAI V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12, ferroelectric ceramics[J]. Ceram Int, 2015, 41(4): 6055–6066.
[23] 张丽娜, 李国荣, 赵苏串, 等. Nb掺杂Bi4Ti3O12层状结构铁电陶瓷的电行为特性研究[J]. 无机材料学报, 2005, 20(6): 1389–1395.
ZHANG Lina, LI Guorong, ZHAO Suchuan, et al. J Inorg Mater (in Chinese), 2005, 20(6): 1389–1395.
[24] 罗雨涵, 江向平, 陈超, 等. Nd3+掺Na0.25K0.25Bi2.5Nb2O9压电陶瓷的结构与性能[J]. 硅酸盐学报, 2017, 45(3): 346–353.
LUO Yuhan, JIANG Xiangping, CHEN Chao, et al. J Chin Ceram Soc, 2017, 45(3): 346–353.
[25] FEI L J, ZHOU Z Y, HUI S P, et al. Structure and electrical properties of lanthanum-doped CaBi4Ti4O15–Bi4Ti3O12 intergrowth ferroelectric[J]. Mater Lett, 2015, 156: 165–168.
[26] PENG Z, CHEN Q, LIU D, et al. Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9, Aurivillius type ceramics[J]. Curr Appl Phys, 2013, 13(7): 1183–1187.
[27] ZHANG Q W, SUN H Q, WANG X S, et al. Highly efficient orange emission (K0.5Na0.5)NbO3: Sm3+ lead free piezoceramics[J]. Mater Lett, 2014, 117: 283–285.
[28] WER T, WANG Y Q, ZHOU Q J, et al. Bright reddish-orange emission and enhanced electrical properties of Sm-doped unfilled tetragonal tungsten bronze Ba4LaTiNb9O30[J]. Ceram Int, 2014, 40(10): 16647–16651.
[29] XIA Z G, CHEN D M. Synthesis and Luminescence Properties of BaMoO4:Sm3+ Phosphors[J]. J Am Ceram Soc, 2010, 93(5): 1397–1401.
[30] LI P L, WANG Z J, YANG Z P, et al. Emission features of LiBaBO3: Sm3+ red phosphor for white LED[J]. Mater Lett, 2009, 63(9/10): 751–753.
[31] YU L, HAO J G, XU Z J, et al. Reddish orange–emitting and improved electrical properties of Sm2O3-doped SrBi4Ti4O15 multifunctional ceramics[J]. J Mater Sci-Mater El, 2017, 28(21): 16341–16347.
[32] WANG J, LUO L, HUANG Y, et al. Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1–x) K0.5Na0.5NbO3–xLiNbO3 ceramics[J]. Appl Phys Lett, 2015, 107(19): 2191–2196.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com