首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
燃烧合成碳化硼粉体及其介电吸波性能
作者:丁冬海   肖国庆 种小川   李子沛 
单位:(西安建筑科技大学材料科学与工程学院 西安 710055) 
关键词:燃烧合成法 碳化硼粉末 吸波性能 
分类号:TQ174
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 以炭黑和B2O3为原料、金属Mg为还原剂,采用燃烧合成法制备B4C粉体。以燃烧合成的B4C粉体为吸收剂、石蜡为结合剂制备试样,采用矩形波导法测试不同B4C掺量试样在X波段(8.2~12.4 GHz)的复介电常数,基于传输线理论计算试样反射损耗。结果表明:燃烧合成产物酸洗后可除去MgO、Mg3B2O6等杂质相,产物晶粒尺寸为0.4~1.0 μm,为斜六方晶体结构;试样复介电常数实部和虚部随B4C掺量增加而增大,掺量50%(质量分数)时实部和虚部分别达到19.33和10.40;掺量为33%时,试样吸波性能最佳,当厚度为2.3 mm时,其反射损耗峰值为–21.1 dB,有效吸收频带达2.95 GHz。说明碳化硼是具有前景的高温微波吸收剂。

 In order to evaluate the absorbing properties of B4C ceramic absorber, B4C powder was fabricated via combustion synthesis with carbon black and boron oxide as raw materials, and Mg as a reductant. The microstructure of the products was characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The samples for dielectric test were prepared with B4C powder as an absorber and paraffin as a binder, respectively. The complex permittivity of samples containing different amount of B4C absorber was tested by a rectangular waveguide method at X band   (8.2 GHz–12.4 GHz), and the reflection loss values were calculated based on the transmission line theory. The results show that the impurities such as MgO and Mg3B2O6 can be removed by pickling. The grain size of the product is 0.4–1.0 μm with an oblique hexagonal structure. The real and imaginary parts of the complex permittivity increase with the increase of the content of B4C powder. When the content is 50% (mass fraction), the real and imaginary parts are 19.33 and 10.40, respectively. The calculated results show that the optimum electromagnetic wave absorption performance can be obtained at B4C powder content of 33%. The minimum reflection loss value is –21.1 dB when the thickness is 2.3 mm, and the effective bandwidth reaches 2.95 GHz. It is indicated that B4C powder could be a promising candidate as a high-temperature microwave absorber.

基金项目:
国家自然科学基金(51502236,51572212,51772236)资助。
作者简介:
参考文献:

 [1] DUAN Wenyan, YIN Xiaowei, LI Quan, et al. A review of absorption properties in silicon-based polymer derived ceramics[J]. J Eur Ceram Soc, 2016, 36(15): 3681–3689. 

[2] DING Donghai, LUO Fa, ZHOU Wancheng, et al. Research status and outlook of high temperature radar absorbing materials[J]. J Inorg Mater (in Chinese), 2014, 29(5): 461–469.
[3] MENG Dechuan. Study on conductivity and electromagnetic shielding properties of boron carbide composites (in Chinese, dissertation). Dalian. Dalian University of Technology, 2014.
[4] VAST N, BESON J M, BARONIS, et al. Atomic structure and vibrational properties of icosahedral boron and B4C boron carbide[J]. Comp Materi Sci, 2000, 17(2/4): 127–132.
[5] MA Mengdong, YANG Ruilong, ZHANG Can, et al. Direct large-scale fabrication of C encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers[J]. Carbon, 2019, 148: 504–511.
[6] DIMITAR Radev, EWARD Ampaw. Classical and contemporary synthesis methods of boron carbide powers[J]. CR Acad Bulg Sci, 2015, 68(8): 944–956.
[7] KUHLMANN U, WERHIT H. Raman effect of boron carbide (B4.3C to B10.37C)[J]. J Alloy Compd, 1994, 205(1/2): 87–91.
[8] GHOSH D, SUBHASH G, SUDARSHAN T S, et al. Dynamic indentation response of fine grained boron caibide[J]. J Am Ceram Soc, 2007, 90(6): 1850–1857. 
[9] SIMEONE D, MALLET C, DUBUISSON P, BALDINOZZI G, et al. Study of Boron Caibide Evolution under Neutron Irradiation by Raman spectroscopy[J]. J Nucl Mater, 1999, 277(1): 1–10.
[10] ADITHYA Prakash, KALPATHY B, SUNDARAM. Optical and XPS studies of BCN thin fifilms by co-sputtering of B4C and BN targets[J]. Appl Surf Sci, 2017, 396: 484–491.
[11] ZHANG Song, LU Wenzhong, WANG Chubin, et al. Synthesis and characterization of B13C2 boron carbide ceramic by pulsed electric current sintering[J]. Ceram Int, 2012, 38(2): 895–900.
[12] CHEN R, PENG L M, DUNG X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe ancapsulated within carbon nanotubes[J]. Adv Mater, 2004, 16(5): 401–405.
[13] SINGH V K, SHUKLA A, PATRA Mk, et al. Microwave absorbing property of a thermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon, 2012, 50(6): 2202–2208.
[14] TIAN J B, YAN Z, XIAO F S, et al. A Study of electromagnetic properties of cobalt-multiwalled carbon nanotubes composites[J]. Mater Sci Eng B, 2011, 176(12): 906–912.
[15] QUAN Bin, LING Xiaohui, JI Guangbin, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. J Alloy Compd, 2017, 728(25): 1065–1075.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com