首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Sm/Sb共掺(Bi0.5Na0.5)0.935Ba0.065TiO3陶瓷的电致应变与光致发光特性
作者:    楚丙凯 郝继功  伟* 
单位:(聊城大学材料科学与工程学院 山东 聊城 252059) 
关键词:无铅陶瓷 电致应变 光致发光 
分类号:TQ175
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 介绍了一种无铅发光应变材料(Bi0.5Na0.5)0.935–xSmxBa0.065Ti1–xSbxO3 (BNT–0.065BT–xSmSb)陶瓷。研究了Sm/Sb对BNT–0.065BT相结构、形貌和电性能的影响。BNT–0.065BT–xSmSb陶瓷均呈现纯钙钛矿相结构。Sm/Sb的加入诱导铁电弛豫相变,从而促进了应变的改善。当x=0.004时,单极应变为0.31% (70 kV/cm),相当于大信号d33*(Smax/Emax)为443 pm/V。此外,发光性能研究表明,BNT–0.065BT–xSmSb陶瓷在407 nm激发下呈现明亮的橙红色发光。发光强度随着Sm/Sb掺杂浓度的增加而增大,其主要发射峰为599 nm附近的强红色发射峰,对应于4G5/2→6H7/2跃迁。BNT–0.065BT–xSmSb陶瓷作为一种多功能材料,在光电一体化和耦合器件的应用中显示出巨大的潜力。

 In this paper, new lead-free luminescent ferroelectric materials, (Bi0.5Na0.5)0.935–xSmxBa0.065Ti1–xSbxO3 (BNT–0.065BT–xSmSb) ceramics, were prepared by introducing Sm/Sb. The influence of Sm/Sb on the phase structure, microstructure and electrical functions of BNT–0.065BT was systematically studied. BNT–0.065BT–xSmSb ceramics presented a pure perovskite phase structure. Doping with Sm/Sb induced a ferroelectric to relaxor phase transformation and thus promoted strain improvement. When x= 0.004, the unipolar strain was 0.31% (70 kV/cm), equivalent to a large signal d33*(Smax/Emax) of 443 pm/V. Moreover, studies on the luminescence properties showed that BNT–0.065BT–xSmSb ceramics exhibited bright orange-red luminescence under 407 nm excitation. The luminescence intensity increased as the Sm/Sb doping concentration increased. The main emission peak was a strong red emission peak located near 599 nm, corresponding to the 4G5/2→6H7/2 transition. As multifunctional materials, BNT–0.065BT–xSmSb ceramics showed great latent capacity for optical–electrical integration and coupling device applications.

基金项目:
国家重点研发计划(2016YFB0402701);山东省高等学校优秀青年创新团队支持计划(2019KJA025);聊城大学科研项目(318011906)。
作者简介:
参考文献:

 [1]TAKENAKA T, NAGATA H. Present status of non-lead-based piezoelectric ceramics[J]. Key Eng Mater, 1999, 157–158:57–64.

[2]商鑫亭, 艾彩娇, 顾雅欣, 等. 烧结气氛对BNT–BKT–ST薄膜结构和性能影响[J]. 聊城大学学报(自然科学版), 2018(3): 19–23.
SHANG X, Ai C, GU Y, et al. J Liaocheng Univ:Nat Sci Ed (In Chinese), 2018(3): 19–23.
[3]HERABUT A, SAFARI A. Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x) LaxTiO3 ceramics[J]. J Am Ceram Soc, 1997, 80(11): 2954–2958.
[4]ZHANG Q, SUN H, WANG X, et al. Highly efficient orange emission (K0.5Na0.5) NbO3: Sm3+ lead free piezoceramics[J]. Mater Lett, 2014, 117: 283–285. 
[5]HAO J, LI W, ZHAI J, et al. Progress in high–strain perovskite piezoelectric ceramics[J]. Mater Sci Eng: R: Reports, 2019, 135: 1–57.
[6]LIANG C, HAO J, LI W, et al. Strong red emission and enhanced electrostrain in (Bi0.5Na0.5)0.935−xPrxBa0.065Ti1−xSbxO3 lead-free multifunctional ceramics[J]. J Mater Sci: Mater Electr, 2018, 29(16): 13810–13817.
[7]HAO J, XU Z, CHU R, et al. Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5(M= Nb, Ta, Sb) lead-free piezoceramics[J]. J Eur Ceram Soc, 2016, 36(16): 4003–4014.
[8]YAO Q, WANG F, XU F, et al. Electric field-induced giant strain and photoluminescence–enhancement effect in rare-earth modified lead-free piezoelectric ceramics[J]. ACS Appl Mater Int, 2015, 7(9): 5066–5075.
[9]SHI J, FAN H, LIU X, et al. Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.7)xBa0.055TiO3 ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3675–3683.
[10]CHENG R, XU Z, CHU R, et al. Microstructure and electrical properties of Bi1/2Na1/2TiO3–BaTiO3–Y2NiMnO6 lead-free piezoelectric ceramics[J]. Ceram Inter, 2015, 41(5): 6424–6431.
[11]HAO J, XU Z, CHU R, et al. Bright upconversion emission and large strain in Er/Sb-codoped (Bi0.5Na0.5)0.945Ba0.065TiO3 ceramics[J]. Mater Lett, 2017, 193: 138–141.
[12]LI P, LIU B, SHEN B, et al. Large strain response in Bi4Ti3O12 modified BNT–BT piezoelectric ceramics[J]. Ceram Inter, 2017, 43(1): 1008–1013.
[13]XIA X, JIANG X, CHEN C, et al. Enhanced piezoelectric performance and orange-red emission of Sm3+ doped (Na1/2Bi1/2) TiO3 based lead-free ceramics[J]. Ceram Inter, 2017, 43(1): 376–384.
[14]HAO J, XU Z, CHU R, et al. Large electrostrictive effect and strong photoluminescence in rare-earth modified lead-free (Bi0.5Na0.5)TiO3-based piezoelectric ceramics[J]. Scripta Mater, 2016, 122: 10–13.
[15]HU B, PAN Z, DAI M, et al. Photoluminescence and temperature dependent electrical properties of Er-doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics[J]. J Am Ceram Soc, 2014, 97(12): 3877–3882.
[16]SUN H, WU X, PENG D F, et al. Room-temperature large and reversible modulation of photoluminescence by in situ electric field in ergodic relaxor ferroelectrics[J]. ACS Appl Mater Interf, 2017, 9(39): 34042–34049.
[17]ULLAH A, ALAM M, ULLAH A, et al. High strain response in ternary Bi0.5Na0.5TiO3–BaTiO3–Bi(Mn0.5Ti0.5)O3 solid solutions[J]. RSC Adv, 2016, 6(68): 63915–63921.
[18]WANG K, HUSSAIN A, JO W, et al. Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics[J]. J Am Ceram Soc, 2012, 95(7): 2241–2247.
[19]ZHANG S T, KOUNGA A B, AULBACH E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system[J]. Appl Phys Lett, 2007, 91(11): 112906.
[20]JO W, DITTMER R, ACOSTA M, et al. Giant electric–field–induced strains in lead-free ceramics for actuator applications-status and perspective[J]. J Electroceram, 2012, 29(1): 71–93.
[21]GONG Y, HE X, CHEN C, et al. Large electric field-induced strain in ternary Bi0.5Na0.5TiO3–BaTiO3–Sr2MnSbO6 lead-free ceramics[J]. Ceram Inter, 2019, 45(6): 7173–7179.
[22]ZHANG Q, ZHANG Y, SUN H, et al. Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics[J]. J Eur Ceram Soc, 2017, 37(3): 955–966.
[23]HAO J, XU Z, CHU R, et al. Bright reddish-orange emission and good piezoelectric properties of Sm2O3-modified (K0.5Na0.5)NbO3-based lead-free piezoelectric ceramics[J]. J Appl Phys, 2015, 117(19): 194104.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com