首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硼化钛对无压烧结碳化硼结构和性能的影响
作者:李宗家1 张佳敏1 程焕武1 2 王扬卫1 2  宇1  瑞1 
单位:(1. 北京理工大学材料学院 北京 100081 2. 冲击环境下材料技术重点实验室 北京 100081) 
关键词:碳化硼 硼化钛 复相陶瓷 无压烧结 增韧 
分类号:TQ174
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 利用无压真空烧结炉,选用C和Si作为烧结助剂,将不同含量的TiB2作为第二相添加到B4C基体中,在不同温度下进行无压烧结制备出B4C–TiB2复相陶瓷。研究了B4C–TiB2成分配比和烧结温度对复相陶瓷微观结构和力学性能的影响,以及B4C–TiB2复相陶瓷的增韧机理。结果表明:当烧结温度为2 200 ℃、TiB2含量为30%时,所制复相陶瓷的致密度及综合力学性能最高,致密度为94.59%,洛氏硬度、抗弯强度和断裂韧度分别为87.62、182 MPa、3.97 MPa·m1/2;TiB2颗粒能有效的钉扎晶界,抑制B4C晶粒的长大,起到细晶强化的作用,TiB2和叠层状石墨相阻碍了裂纹扩展,提高复相陶瓷的断裂韧性。

 B4C–TiB2 multi-phase ceramics were prepared in a pressureless vacuum sintering-furnace at different temperatures with TiB2 added into B4C matrix as a second phase substance, and C and Si as sintering aids. The density, hardness, bending strength and fracture toughness of the samples were determined. The influences of composition ratio of B4C–TiB2 and sintering temperature on the microstructure and mechanical properties of the multiphase ceramics were investigated by X–ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. The toughening mechanism of ceramics was discussed. The results show that the optimum density and comprehensive mechanical properties of the multiphase ceramics (i.e., the relative density of 94.59%, the Rockwell hardness of 87.62, the bending strength of 182 MPa, and the fracture toughness of 3.97 MPa·m1/2 can be obtained at a sintering temperature of 2 200 ℃ and TiB2 content of 30%. The TiB2 particles can effectively nail the grain boundary, inhibit the growth of B4C grains and play a role in fine-grain strengthening. The TiB2 and laminated graphite phase hinder the crack growth, thus improving the fracture toughness.

基金项目:
作者简介:
参考文献:

 [1] 丁硕, 温广武, 雷廷权. 碳化硼材料研究进展. 材料科学与工艺, 2003, 11(1): 101–105. 

DING Shuo, WEN Guangwu, LEI Tingquan. Mater Sci Technol (in Chinese), 2003, 11(1): 101–105.
[2] ZHANG Liu, WANG Zhi, LI Qinggang, et al. Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites[J]. Ceram Int, 2018, 44(3): 3048–3055.
[3] LI Xiaoguang, JIANG Dongliang, ZHANG Jingxian, et al. Pressureless sintering of boron carbide with Cr3C2 as sintering additive[J]. J Eur Ceram Soc, 2014, 34(5): 1073–1081.
[4] RADEV D, AVRAMOVA I, KOVACHEVA D, et al. Synthesis of boron carbide by reactive-pulsed electric current sintering in the presence of tungsten boride[J]. Int J Appl Ceram Tec, 2016, 13(6): 997–1007.
[5] YAMADA S, HIRAO K, YAMAUCHI Y, et al. High strength B4C–TiB2 composites fabricated by reaction hot-pressing[J]. J Eur Ceram Soc, 2003, 23(7): 1123–1130.
[6] HE Qianglong, WANG Aiyang, LIU Chun, et al. Microstructures and mechanical properties of B4C–TiB2–SiC composites fabricated by ball milling and hot pressing[J]. J Eur Ceram Soc, 2018, S0955221918300943. 
[7] WEN Qun, TAN Yongqiang, ZHONG Zhihong, et al. High toughness and electrical discharge machinable B4C–TiB2–SiC composites fabricated at low sintering temperature[J]. Mse: A, 2017, 701: 338–343.
[8] HUANG S G, VANMEENSEL K, BIEST O V D, et al. In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc, 2011, 31(4): 637–644.
[9] 吴晓, 杨亚云, 林文松. B4C/TiB2复相陶瓷材料的研究进展[J]. 机械工程材料, 2016, 40(11): 1–4+80.
WU Xiao, YANG Yayun, LIN Wensong. Mater Mech Eng (in Chinese), 2016, 40(11): 1–4+80.
[10] BAHARVANDI H R, HADIAN A M. Pressureless Sintering of TiB2-B4C Ceramic Matrix Composite. J Mater Eng Perform, 2008, 17(6): 838–841. 
[11] MASHHADI M, TAHERI-NASSAJ E, MASHHADI M, et al. Pressureless Sintering of B4C–TiB2 Composites with Al Additions[J]. Ceram Int, 2011, 37(8): 3229–3235.
[12] HEYDARI M S, BAHARVANDI H R, DOLATKHAH K. Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocomposites[J]. Int J Refract Met H, 2015, 51: 6–13.
[13] 韩伟月, 林文松, 吴晓, 等. TiO2颗粒原位合成TiB2对B4C陶瓷材料组织与力学性能的影响[J]. 人工晶体学报, 2017, 46(8): 1498–1502.
HAN Weiyue, LIN Wensong, WU Xiao, et al. J Synth Cryst (in Chinese), 2017, 46(8): 1498–1502.
[14] HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC–SiC–Si infiltrated composites. J Solid State Chem, 2006, 179(9): 2875–2879.
[15] 徐昱峰, 茹红强, 乔海波, 等. TiB2含量对B4C–SiC–Si–TiB2复合材料力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(S1): 702–705.
XU Yufeng, RU Hongqiang, QIAO Haibo, et al. Rare Metal Mater Eng (in Chinese), 2015, 44(S1): 702–705.
[16] 唐军, 谭寿洪, 陈忠明, 等. B4C陶瓷的协同增韧. 无机材料学报, 1997, 12(3): 297–301. 
TANG Jun, TAN Shouhong, CHEN Zongming, et al. J Inorg Mater (in Chinese), 1997, 12(3): 297–301.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com