[1] 丁硕, 温广武, 雷廷权. 碳化硼材料研究进展. 材料科学与工艺, 2003, 11(1): 101–105.
DING Shuo, WEN Guangwu, LEI Tingquan. Mater Sci Technol (in Chinese), 2003, 11(1): 101–105.
[2] ZHANG Liu, WANG Zhi, LI Qinggang, et al. Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites[J]. Ceram Int, 2018, 44(3): 3048–3055.
[3] LI Xiaoguang, JIANG Dongliang, ZHANG Jingxian, et al. Pressureless sintering of boron carbide with Cr3C2 as sintering additive[J]. J Eur Ceram Soc, 2014, 34(5): 1073–1081.
[4] RADEV D, AVRAMOVA I, KOVACHEVA D, et al. Synthesis of boron carbide by reactive-pulsed electric current sintering in the presence of tungsten boride[J]. Int J Appl Ceram Tec, 2016, 13(6): 997–1007.
[5] YAMADA S, HIRAO K, YAMAUCHI Y, et al. High strength B4C–TiB2 composites fabricated by reaction hot-pressing[J]. J Eur Ceram Soc, 2003, 23(7): 1123–1130.
[6] HE Qianglong, WANG Aiyang, LIU Chun, et al. Microstructures and mechanical properties of B4C–TiB2–SiC composites fabricated by ball milling and hot pressing[J]. J Eur Ceram Soc, 2018, S0955221918300943.
[7] WEN Qun, TAN Yongqiang, ZHONG Zhihong, et al. High toughness and electrical discharge machinable B4C–TiB2–SiC composites fabricated at low sintering temperature[J]. Mse: A, 2017, 701: 338–343.
[8] HUANG S G, VANMEENSEL K, BIEST O V D, et al. In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc, 2011, 31(4): 637–644.
[9] 吴晓, 杨亚云, 林文松. B4C/TiB2复相陶瓷材料的研究进展[J]. 机械工程材料, 2016, 40(11): 1–4+80.
WU Xiao, YANG Yayun, LIN Wensong. Mater Mech Eng (in Chinese), 2016, 40(11): 1–4+80.
[10] BAHARVANDI H R, HADIAN A M. Pressureless Sintering of TiB2-B4C Ceramic Matrix Composite. J Mater Eng Perform, 2008, 17(6): 838–841.
[11] MASHHADI M, TAHERI-NASSAJ E, MASHHADI M, et al. Pressureless Sintering of B4C–TiB2 Composites with Al Additions[J]. Ceram Int, 2011, 37(8): 3229–3235.
[12] HEYDARI M S, BAHARVANDI H R, DOLATKHAH K. Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocomposites[J]. Int J Refract Met H, 2015, 51: 6–13.
[13] 韩伟月, 林文松, 吴晓, 等. TiO2颗粒原位合成TiB2对B4C陶瓷材料组织与力学性能的影响[J]. 人工晶体学报, 2017, 46(8): 1498–1502.
HAN Weiyue, LIN Wensong, WU Xiao, et al. J Synth Cryst (in Chinese), 2017, 46(8): 1498–1502.
[14] HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC–SiC–Si infiltrated composites. J Solid State Chem, 2006, 179(9): 2875–2879.
[15] 徐昱峰, 茹红强, 乔海波, 等. TiB2含量对B4C–SiC–Si–TiB2复合材料力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(S1): 702–705.
XU Yufeng, RU Hongqiang, QIAO Haibo, et al. Rare Metal Mater Eng (in Chinese), 2015, 44(S1): 702–705.
[16] 唐军, 谭寿洪, 陈忠明, 等. B4C陶瓷的协同增韧. 无机材料学报, 1997, 12(3): 297–301.
TANG Jun, TAN Shouhong, CHEN Zongming, et al. J Inorg Mater (in Chinese), 1997, 12(3): 297–301.
|