首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
致密外壳整体增强Si3N4泡沫陶瓷的制备及性能
作者:杨飞跃   杨自春 陈国兵 袁硕伟 
单位:(海军工程大学动力工程学院 武汉 430032) 
关键词:氮化硅泡沫陶瓷 外壳 晶体形貌 抗压缩强度 
分类号:TB321
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用反应烧结法制备氮化硅泡沫陶瓷,对坯体进行预埋粉处理,烧结得到厚度为500 μm左右的致密外壳,最厚处可达693 μm。经1 400 ℃氮化6 h后,外壳的微观形貌为交错排列的晶柱状;氮化温度升至1 450 ℃时,壳层中晶柱长度有所增加。氮化时间延长至10 h后,外壳的微观形貌均转变为粗晶柱状,降低了晶柱的长径比。外壳使泡沫陶瓷具有一定弹性(杨氏弹性模量为117–352 MPa),其抗压缩强度相对无外壳样品最高提升47%。并且,外部壳层的存在对泡沫陶瓷的开孔率、密度及导热系数影响非常小。

 A Si3N4 ceramic foam having a shell with the thickness of 500 μm and the thickest portion of 693 μm was prepared by a reaction sintering method with a pre-embedding powder. The shell sintered at 1 400 ℃ for 6 h appears a staggered crystal columnar structure. The length of the crystal column in the shell increases slightly when the nitriding temperature is 1 450 ℃. Prolonging the nitriding time to 10 h can transform the microstructure of shell into a coarse crystalline column structure, thus reducing an aspect ratio of the crystal column. The shell has a ceramic foam with a certain degree of elasticity (i.e., Young's modulus of elasticity is 117–352 MPa), and increases the compressive strength of the sample by 47%. In addition, the presence of shell has little effect on the porosity, density and thermal conductivity of ceramic foam.

基金项目:
国家自然科学基金(51802347);湖北省自然科学基金(2018CFB183)。
作者简介:
参考文献:

 [1]STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routesto macroporous ceramics-a review. J Am Ceram Soc, 2006, 89(6): 1771–1789.

[2]TOPATES G. Direct production of Si3N4 foams by carbothermal reduction and nitridation of SiO2. Ceram Int, 2018, 44(16): 20545–20550.
[3]YIN L, ZHOU X, YU J, et al. Study on the Consolidation Process of Protein Foaming in the Preparation of Ceramic Foams. J Inorg Mater, 2012, 27(12): 1331–1335.
[4]YU J, YANG J, LI S, et al. Preparation of Si3N4 foam ceramics with nest-like cell structure by particle-stabilized foams. J Am Ceram Soc, 2012, 95(4): 1229–1233.
[5]CALISKAN F, DEMIR A, TATLI Z. Fabrication of Si3N4 preforms from Si3N4 produced via CRN technique. J Porous Mat, 2013, 20(6): 1501–1507.
[6]YANG F, ZHAO S, YANG Z, et al. Microstructure and properties of Si3N4 foam ceramics modified by in-situ self-grown nanowires. Ceram Int, 2019, 45(14): 16725–16730.
[7]MORAESA E G, LI D, COLOMBO P, et al. Silicon nitride foams from emulsions sintered by rapid intense thermal radiation. J Eur Ceram Soc, 2015, 35(12): 3263–3272.
[8]VIJAYAN S, WILSON P, SREEJA R, et al. Low-density open cellular silicon carbide foams from sucrose and silicon powder. J Am Ceram Soc, 2016, 99(12): 3866–3873.
[9]SEINER H, RAMIREZ C, KOLLER M, et al. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Mater Design, 2015, 87: 675–680.
[10]SEINER H, SEDLAK P, KOLLER M, et al. Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Compos Sci Technol, 2013, 75: 93–97. 
[11]XIAO S, MEI H, HAN D, et al. Porous (SiCw-Si3N4w)/(Si3N4–SiC) composite with enhanced mechanical performance fabricated by 3D printing. Ceram Int, 2018, 44(12): 14122–14127.
[12]NANGREJO M R, BAO X J, EDIRISINGHE M J. Preparation of silicon carbide-silicon nitride composite foams from pre-ceramic polymers. J Eur Ceram Soc, 2000, 20(11): 1777–1785.
[13]MATSUNAGA C, ZHOU Y, KUSANO D, et al. Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3 and MgO as sintering additives. Int J Appl Ceram Tec, 2017, 14(6): 1157–1163.
[14]ZORAN Z, YU Z, VLADIMIR K. Effect of grain width and aspect ratio on mechanical properties of Si3N4 ceramics. J Mater Sci, 2007, 42(14): 5431–5436.
[15]KIYOSHI H, YOU Z, HIDEKI H, et al. High thermal conductivity silicon nitride ceramics. J Korean Ceram Soc, 2012, 49(4), 380–384.
[16]ZHOU Y, OHJI T, HYUGA H, et al. Fracture resistance behavior of high-thermal-conductivity silicon nitride ceramics. Int J Appl Ceram Tec, 2014, 11(5), 872–882.
[17]MAYER G. Rigid Biological Systems as Models for Synthetic Composites. Science, .2005, 310(5751): 1144–1147.
[18]MENING R, MEYERS M H, MEYERS M A, et al. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater, 2000, 48(9): 2383–2398.
[19]WEINER S, WAGNER H D. The material bone: structure mechanical function relations. Annu Rev Mater Sci, 1998 28: 271–298.
[20]JI B, GAO H. Mechanical principles of biological nanocomposites. Annu Rev Mater Res, 2010, 40: 77–100.
[21]REN B, WANG Y, LIU J, et al. Preparation of Al2O3–Si3N4 porous ceramics with a cactus-like architecture for potential filters applications. Ceram Int, 2019, 45(5): 6581–6584.
[22]BUEVAC D, BOKOVI S, MATOVI B. Kinetics of the α-β phase transformation in seeded Si3N4 ceramics. Sci Sinter, 2008, 40(3): 263–270.
[23]DING H, ZHAO Z, QI T, et al. High α–β phase transition and properties of YbF3-added porous Si3N4 ceramics obtained by low temperature pressureless sintering. Int J Refract Met H, 2019, 78: 131–137.
[24]YIN L, ZHOU X, YU J, et al. Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method. Ceram Int, 2016, 42(1): 1713–1719.
[25]ABHISHEK D, TEKALUR S A. Synthetic staggered architecture composites. Mater Design, 2013, 46: 802–808.
[26]YAO D, XIA Y, ZUO K, et al. Gradient porous silicon nitride prepared via vacuum foaming and freeze drying. Mater Lett, 2015, 141: 138–140.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com