首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
TiN对热压烧结Si3N4–TiN复相陶瓷显微结构和力学性能的影响
作者:魏万鑫 于俊杰 刘伟键 郭伟明 林华泰 
单位:(广东工业大学机电工程学院 广州 510006) 
关键词:氮化硅陶瓷 氮化钛来源 相组成 显微结构 力学性能 
分类号:TB32
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 研究了TiN的来源(TiN粉、TiO2粉和TiO2溶胶)对热压烧结Si3N4–TiN复相陶瓷的相组成、显微结构与力学性能的影响。结果表明,当以TiN粉为第二相添加剂时,试样中仅检测到β-Si3N4和TiN相,Si3N4晶粒与TiN颗粒较粗大,硬度、强度和断裂韧性分别为(15.6±0.3) GPa、(1 058±78) MPa和(11.2±0.6) MPa·m1/2;当以TiO2粉为第二相添加剂时,除了β-Si3N4和TiN相,还检测到O′-Sialon相,O′-Sialon相的含量为8.7% (质量分数),Si3N4晶粒与TiN颗粒均匀细小,样品硬度提高到(16.7±0.4) GPa,强度和断裂韧性没有显著变化,分别为(986±76) MPa和(11.3±0.4) MPa·m1/2;当以TiO2溶胶为第二相添加剂时,同样检测到O′-Sialon相,O′-Sialon相的含量为12.5%,Si3N4晶粒与TiN颗粒均匀细小,样品硬度较高为(16.6±0.5) GPa,其强度和断裂韧性较低分别为(788±94) MPa和(10.2±1.0) MPa·m1/2。以TiO2粉为第二相添加剂时,可获得显微结构均匀细化、综合力学性能较佳的Si3N4–TiN复相陶瓷材料。

 The effect of TiN source (i.e., TiN powder, TiO2 powder and TiO2 sol) on the phase compositions, microstructures and mechanical properties of hot-pressed Si3N4–TiN ceramics was investigated. The results show that only β-Si3N4 and TiN phases are detected for the sample with TiN powder. The sizes of β-Si3N4 and TiN grains are large, the Vickers hardness, flexure strength, and fracture toughness are (15.6±0.3) GPa, (1 058±78) MPa, and (11.2±0.6) MPa·m1/2, respectively. However, the O'-Sialon phase appears in the sample with TiO2 powder in addition to β-Si3N4 and TiN phases, and the content of O'-Sialon is 8.7wt%. Due to the relatively fine grains of β-Si3N4 and TiN, the Vickers hardness increases to (16.7±0.4) GPa, and the flexure strength and fracture toughness are (986±76) MPa and (11.3±0.4) MPa·m1/2, respectively. Moreover, the O'-Sialon phase appears in the sample with TiO2 sol, the content of O'-Sialon is 12.5wt%, and the size of β-Si3N4 and TiN grains is finer, having a higher Vickers hardness (i.e., 16.6±0.5 GPa), and relatively lower flexure strength (i.e., 788±94 MPa) and fracture toughness (i.e., 10.2±1.0 MPa·m1/2). Si3N4–TiN ceramics with uniformly fine microstructures and good mechanical properties can be thus obtained with TiO2 powder.

基金项目:
国家重点研发计划(2017YFB0310400)。
作者简介:
参考文献:

 [1]RILEY F L. Silicon nitride and related materials[J]. J Am Ceram Soc, 2000, 83(2): 245–265.

[2]BAL B S, RAHAMAN M N. Orthopedic applications of silicon nitride ceramics[J]. Acta Biomater, 2012, 8(8): 2889–2898.
[3]DANZER R, LENGAUER M. Silicon nitride materials for hot working of high strength metal wires[J]. Eng Fail Anal, 2010, 17(3): 596–606.
[4]WANG L, SNIDLE R W, GU L. Rolling contact silicon nitride bearing technology: A review of recent research[J]. Wear, 2000, 246(1–2): 159–173.
[5]DUAN R G, ROEBBEN G, SARBU C, et al. Microstructural differences in silicon nitrides with and without a small amount of TiN additive[J]. Key Eng Mater, 2002, 206–213: 1181–1184.
[6]HUANG J L, LU H H, LI D F, et al. Microstructure, chemical reaction and mechanical properties of TiC/Si3N4 and TiN–coated TiC/Si3N4 composites[J]. J Mater Sci, 1996, 31(18): 4899–4906.
[7]HILLINGER G, HLAVACEK V. Direct synthesis and sintering of silicon nitride/titanium nitride composite[J]. J Am Ceram Soc, 1995, 78(2): 495–496.
[8]LEE B T, YOON Y J, LEE K H. Microstructural characterization of electroconductive Si3N4–TiN composites[J]. Mater Lett, 2001, 47(1): 71–76.
[9]BELLOSI A, GUICCIARDI S, TAMPIERI A. Development and characterization of electroconductive Si3N4–TiN composites[J].  J Eur Ceram Soc, 1992, 9(2): 83–93.
[10]HIRAI T, HAYASHI S. Density and deposition rate of chemically vapour-deposited Si3N4–TiN composites[J]. J Mater Sci, 1983, 18(8): 2401–2406. 
[11]HAYASHI S, HIRAI T, HIRAGA K, et al. Microstructure of Si3N4–TiN composites prepared by chemical–vapour deposition[J]. J Mater Sci, 1982, 17(11): 3336–3340.
[12]邹红, 邹从沛. TiN颗粒增韧Si3N4复合材料增韧机制的研究[J]. 中国核科技报告, 2003, (01): 239–249.
ZOU Hong, ZOU Congpei. China Nucl Sci Technol Report (in Chinese), 2003(1): 239–249.
[13]邹红, 邹从沛. TiN颗粒增韧Si3N4复合材料氧化行为的研究[J]. 核动力工程, 2002, 23(4): 1–4.
ZOU Hong, ZOU Congpei. Nucl Power Eng(in Chinese), 2002, 23(4): 1–4.
[14]田春艳. 纳米Si3N4基陶瓷复合材料的制备与性能研究[D]. 合肥: 合肥工业大学, 2007.
TIAN Chunyan. Research on the fabrication and mechanical properties of Si3N4-based nano-ceramic composites (in Chinese, dissertation). Hefei: Hefei University of Technology, China, 2007.
[15]TIAN C Y, LIU N. Effect of nano-TiN particles on microstructure and mechanical properties of Si3N4-based nano-ceramics[J]. Adv Appl Ceram, 2011, 110(4): 205–210.
[16]GAO L, LI J G, KUSUNOSE T, et al. Preparation and properties of TiN–Si3N4 composites[J]. J Eur Ceram Soc, 2004, 24(2): 381–386.
[17]ZHENG S, GAO L, WATANABE H, et al. Improving the microstructure of Si3N4–TiN composites using various PEIs to disperse raw TiO2 powder[J]. Ceram Int, 2007, 33(3): 355–359.
[18]DUAN R G, ROEBBEN G, VLEUGELS J, et al. In situ formation of Si2N2O and TiN in Si3N4-based ceramic composites[J]. Acta Mater, 2005, 53(9): 2547–2554.
[19]MARCHI J, SILVA CCGE, SILVA BB, et al. Influence of additive system (Al2O3–RE2O3, RE = Y, La, Nd, Dy, Yb) on microstructure and mechanical properties of silicon nitride-based ceramics[J]. Mater Res, 2009, 12(2):145–150.
[20]陈肇友. 化学热力学与耐火材料[M]. 北京: 冶金工业出版社, 2005.
[21]于俊杰, 管甲锁, 郭伟明, 等. 基于高SiO2含量的Si3N4基陶瓷显微结构与力学性能[J]. 硅酸盐学报, 2016, 44(12): 1713–1717.
YU Junjie, GUAN Jiasuo, GUO Weiming, et al. J Chin Ceram Soc, 2016, 44(12): 1713–1717.
[22]KLEEBE H J, PEZZOTTI G, ZIEGLER G. Microstructure and fracture toughness of Si3N4 ceramics: combined roles of grain morphology and secondary phase chemistry[J]. J Am Ceram Soc, 1999, 82(7): 1857–1867.
[23]EKSTROM T, OLSSON P O, HOLMSTROM M. O'-sialon ceramics prepared by hot isostatic pressing[J]. J Eur Ceram Soc, 1993, 12(3): 165–176.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com