首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于流化床化学气相沉积的碳化硅材料制备、性能及其在核领域的应用
作者:刘荣正   刘马林 常家兴 邵友林   
单位:(清华大学核能与新能源技术研究院 先进核能协同创新中心 北京 100084) 
关键词:碳化硅 涂层 流化床化学气相沉积 核能应用 
分类号:TB383
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用流化床化学气相沉积法(FB-CVD)制备了碳化硅包覆层,利用多尺度耦合模型对包覆过程进行了模拟,以提高包覆层的均匀性。开发了可应用在核能领域的碳化硅材料,如致密碳化硅层、细晶粒碳化硅包覆层、碳化硅/碳/硅混合包覆层、多孔碳化硅包覆层、碳化硅纳米线、碳化硅纳米粒子等。为了评估碳化硅包覆层的可靠性,进行了极端条件下的模拟事故氧化考验。对于以碳化硅为主要包覆层的燃料元件,在高通量核反应堆中进行了辐照试验,结果表明:该碳化硅包覆层材料在核应用中的表现优异。

 Results regarding the fabrication of SiC coating layers and other SiC-related materials for nuclear reactor applications are reported herein. A fluidized bed chemical vapor deposition (FB–CVD) method was used to prepare the SiC coatings, and the coating process was simulated using the newly proposed multiscale coupling model to enhance the coating uniformity. Different kinds of SiC series products, such as dense SiC layers, fine-grained SiC coating layers, SiC/C/Si mixed coating layers, porous SiC coating layers, SiC nanowires and SiC nanoparticles, were developed for nuclear energy applications. Postulated accident conditions, such as air ingress, wereconsideredto evaluate the reliability of the SiC coating layer. An irradiation test was also performed in ahigh-flux nuclear reactor, and the results validated the high performance of SiC coating materials in nuclear reactor applications.

基金项目:
国家自然科学基金(21771116),国家科技重大专项(ZX06901)。
作者简介:
参考文献:

 [1] FOTI G. Silicon carbide: from amorphous to crystalline material[J]. Appl Surf Sci, 2001, 184: 20–26.

[2] FAN J Y, WU X L, CHU P K. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties[J]. Prog Mater Sci, 2006, 51: 983–1031.
[3] PADTURE N P, LAWN B R. Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure[J]. J Am Ceram Soc, 1994, 77: 2518–2522.
[4] SEONG H K, CHOI H J, LEE S K, et al. Optical and electrical transport properties in silicon carbide nanowires[J]. Appl Phys Lett, 2004, 85: 1256.
[5] TAGUCHI T, TSUBAKIYAMA R, MIYAJIMA K, et al. Effect of surface treatment on photoluminescence of silicon carbide nanotubes[J]. Appl Surf Sci, 2017, 403: 308–313.
[6] KEFFOUS A, GABOUZE N, CHERIET A, et al. Investigation of porous silicon carbide as a new material for environmental and optoelectronic applications[J]. Appl Surf Sci, 2010, 256: 5629–5639.
[7] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. J Nucl Mater, 2008, 371: 329–377.
[8] ZHANG Z, YU S. Future HTGR developments in China after the criticality of the HTR-10[J]. Nucl Eng Des, 2002, 218: 249–257.
[9] LOHNERT G H, NABIELEK H, SCHENK W. The fuel element of the HTR-module, a prerequisite of an inherently safe reactor[J]. Nucl Eng Des, 1988, 109: 257–263.
[10] PETTI D A, BUONGIORNO J, MAKI J T, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nucl Eng Des, 2003, 222: 281–297.
[11] MINATO K, FUKUDA K, ISHIKAWA A, et al. Advanced coatings for HTGR fuel particles against corrosion of SiC layer[J]. J Nucl Mater, 1997, 246: 215–222.
[12] NABIELEK H, KUHNLEIN W, SCHENK W, et al. Development of advanced HTR fuel elements[J]. Nucl Eng Des, 1990, 121: 199–210.
[13] FORSBERG C W, TERRANI K A, SNEAD L L, et al. Fluoride-salt- cooled high-temperature reactor (FHR) with silicon-carbide-matrix coated-particle fuel[J]. Trans Am Nucl Soc, 2012, 107: 907–910.
[14] FIELDING R, MEYER M, JUE J F, et al. Gas-cooled fast reactor fuel fabrication[J]. J Nucl Mater, 2007, 371: 243–249.
[15] ?AHIN S, SEFIDVASH F. The fixed bed nuclear reactor concept[J]. Energy Convers Manag, 2008, 49: 1902–1909.
[16] LIU R, LIU M, SHAO Y, et al. Application of silicon carbide in nuclear fuel elements[J]. Mater Rev, 2015, 29: 1–5.
[17] KIM W J, KIM D, PARK J Y. Fabrication and material issues for the application of SiC composites to LWR fuel cladding[J]. Nucl Eng Technol, 2013, 45: 565–572.
[18] YUEH K, CARPENTER D, FEINROTH H. Clad in clay[J]. Nucl Eng Int, 2010, 55: 14–16.
[19] KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and critical issues for development of SiC composites for fusion applications[J]. J Nucl Mater, 2007, 367–370: 659–671.
[20] SNEAD L L, NOZAWA T, FERRARIS M, et al. Silicon carbide composites as fusion power reactor structural materials[J]. J Nucl Mater, 2011, 417: 330–339.
[21] LIU R, LIU M, SHAO Y, et al. Application and research progress of fluidized bed-chemical vapor deposition technology[J]. Chem Ind Eng Prog, 2016, 35: 1263–1272.
[22] ZHANG Q, HUANG J, ZHAO M, et al. Carbon nanotube mass production: Principles and processes[J]. Chem Sus Chem, 2011, 4: 864–889.
[23] SEE C H, HARRIS A T. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition[J]. Ind Eng Chem Res, 2007, 46: 997–1012.
[24] LIU M, LIU B, SHAO Y. Optimization of the UO2 kernel coating process by 2D simulation of spouted bed dynamics in the coater[J]. Nucl Eng Des, 2012, 251: 124–130.
[25] LIU M, LIU B, SHAO Y, et al. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater[J]. Nucl Eng Des, 2014, 271: 68–72.
[26] LIU M, WEN Y, LIU R, et al. Investigation of fluidization behavior of high density particle in spouted bed using CFD–DEM coupling method[J]. Powder Technol, 2015, 280: 72–82.
[27] LIU M, LIU R, LIU B, et al. Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method[J]. Procedia Eng, 2015, 102: 1890–1895.
[28] LIU M, SHAO Y, LIU B. Design and development on automated control system of coated fuel particle fabrication process[J]. At Energy Sci Technol, 2013, 47: 1013–1018.
[29] LIU R, LIU B, ZHANG K, et al. High temperature oxidation behavior of SiC coating in TRISO coated particles[J]. J Nucl Mater, 2014, 453: 107–114.
[30] LIU M, SHAO Y, LIU B, et al. High Temperature oxidation behavior of SiC coating materials[J]. Rare Met Mater Eng, 2013, 42: 673–676.
[31] LIU R, LIU M, LIU B, et al. Study of SiC layer with fine grains in HTGR coated fuel particles[J]. At Energy Sci Technol, 2015, 49: 126–131.
[32] LIU R, LIU M, WANG Z, et al. Preparation of fine grained SiC layer by fluidized bed chemical vapor[J]. J Am Ceram Soc, 2016, 99: 1870–1873.
[33] LIU R, LIU M, CHANG J. Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications[J]. J Mater Res, 2016, 31: 2695–2705.
[34] LIU R, LIU M, CHANG J, et al. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition[J]. J Nucl Mater, 2015, 467: 917–926.
[35] LIU M, LIU R, CHANG J, et al. Preparation of silicon carbide coating layer by fluidized bed chemical vapor deposition using a halogen-free precursor[J]. Key Eng Mater, 2016, 697: 846–851. 
[36] DECK C P, JACOBSEN G M, SHEEDER J, et al. Characterization of SiC-SiC composites for accident tolerant fuel cladding[J]. J Nucl Mater, 2015, 466: 667–681.
[37] LIU R, LIU M, CHANG J, et al. Preparation of highly flexible SiC nanowires by fluidized bed[J]. Chem Vap Depos, 2015, 21: 196–203.
[38] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. J Nucl Mater, 2014, 448: 374–379.
[39] LIU R, LIU M, CHANG J. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition[J]. J Nanoparticle Res, 2017, 19: 26.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com