首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于振荡压力烧结的氧化锆陶瓷水热老化行为
作者: 双1 孟兆禄2 谢志鹏3 魏春城1  鹏1 周立娟1 
单位:(1. 山东理工大学资源与环境工程学院 山东 淄博 255049 2. 潍坊市生态环境局临朐分局 山东 潍坊 262600  3. 清华大学材料学院 新型陶瓷与精细工艺国家重点实验室 北京 100084) 
关键词:振荡压力烧结 相变 抗弯强度 晶粒尺寸 
分类号:TB332
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用振荡压力烧结法制备了致密度高、晶粒细化、力学性能优异的氧化锆陶瓷,研究了水热老化时间对两种氧化锆陶瓷(振荡压力烧结OPS,热压烧结HP)的显微结构、相变及力学性能的作用规律及机制。Raman分析表明:随着老化时间的延长,2种材料中单斜相氧化锆的含量缓慢增加,但OPS氧化锆在178、189 cm–1处的峰值强度显著低于HP氧化锆。水热老化导致氧化锆表面微裂纹、颗粒粗化等现象,当老化时间为18 h时OPS氧化锆和HP氧化锆的抗弯强度分别为1 216和878 MPa。纳米压痕测试表明:OPS氧化锆的力学参数显著优于HP氧化锆。因此,OPS烧结技术有望极大拓展氧化锆陶瓷在生物医学领域的应用。

 The use of zirconia ceramics in humid environments is limited by the phase transformation from the tetragonal phase to the monoclinic phase. In this study, an oscillatory pressure sintering (OPS) technique was developed for the preparation of zirconia ceramics that were characterized by high density, fine grain size and excellent mechanical properties. The hydrothermal aging behaviors of the oscillatory pressure sintered and hot-pressed zirconia were investigated. The Raman analysis showed strong peaks at 178 and 189 cm–1 in both the oscillatory pressure sintered and the hot-pressed specimens, but the peak intensities of the oscillatory pressure sintered specimen were much weaker than those of the hot-pressed specimen. When the specimens were aged for 18 h, the flexural strength of the oscillatory pressure sintered zirconia reached approximately 1 216 MPa, which is much higher than that of the hot-pressed zirconia. Therefore, the OPS technique is promising for the preparation of zirconia ceramics that are used in the biomedical field. 

基金项目:
辽宁科技大学开放课题(USTLGCZX201804)资助。
作者简介:
参考文献:

 [1] MONACO C, TUCCI A, ESPOSITO L, et al. Microstructural changes produced by abrading Y-TZP in presintered and sintered conditions[J]. J Dent, 2013, 41(2): 121–26.

[2] FANG Y, SU Y F, ZHANG Y S, et al. Design, preparation and performances optimization of zirconia-based functionally graded material[J]. J Chin Ceram Soc, 2016, 44(12): 1729–1735.
[3] ZHANG F, INOKOSHI M, VANMEENSEL K, et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics[J]. Acta Mater, 2015, 92: 290–298.
[4] RAMESH S, LEE K Y, TAN C Y. A review on the hydrothermal ageing behaviour of Y-TZP ceramics[J]. Ceram Inter, 2018, 44(17): 20620–20634.
[5] GUO F, LIU Y, WANG G, et al. Hydrothermal ageing of tetragonal zirconia porous membranes: Effect of thermal residual stresses on the phase stability[J]. Corros Sci, 2018, 142(1): 66–78.
[6] GUAZZATO M, ALBAKRY M, RINGER S P, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics[J]. Dent Mater, 2004, 20(5): 449–456.
[7] MANICONE P F, IOMMETTI P R, RAFFAELLI L. An overview of zirconia ceramics: Basic properties and clinical applications[J]. J Dent, 2007, 35(11): 819–826.
[8] KOBAYASHI K, KUWAJIMA H, MASAKI T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing[J]. Solid State Ionics, 1981, 3–4: 489–493.
[9] WULFMAN C, DJAKER N, SADOUN M, et al. 3Y-TZP in-depth phase transformation by Raman spectroscopy: A comparison of three methods[J]. J Am Ceram Soc, 2014, 97(7): 2233–2240.
[10] GREMILLARD L, MARTIN L, ZYCH L, et al. Combining ageing and wear to assess the durability of zirconia-based ceramic heads for total hip arthroplasty[J]. Acta Biomater, 2013, 9(7): 7545–7555.
[11] SCHMAUDER S, SCHUBERT H. Significance of internal stresses for the martensitic transformation in yttria-stabilized tetragonal zirconia polycrystals during degradation[J]. J Am Ceram Soc, 1986, 69(7): 534–540.
[12] LAWSON S. Environmental degradation of zirconia ceramics[J]. J Eur Ceram Soc, 1995, 15(6): 485–502.
[13] FLAMANT Q, ANGLADA M. Hydrofluoric acid etching of dental zirconia. Part 2: Effect on flexural strength and ageing behavior[J]. J Eur Ceram Soc, 2016, 36(1): 135–145.
[14] WEI C, GREMILLARD L. The influence of stresses on ageing kinetics of 3Y- and 4Y- stabilized zirconia[J]. J Eur Ceram Soc, 2018, 38(2): 753–760.
[15] VERESHCHAGINA T A, KUTIKHINA E A, SOLOVYOV L A. Synthesis and structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres[J]. Micropor Mesopor Mat, 2018, 258(3): 228–235.
[16] SUTHARSINI U, THANIHAICHELVAN M, TING C H, et al. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals[J]. Ceram Inter, 2017, 43(10): 7594–7599.
[17] FEFER A, ALCALA J, LLANES L, et al. Microstructure, mechanical properties and stability of nitrided Y-TZ[J]. J Eur Ceram Soc, 2003, 23(15): 2955–2962.
[18] LEE T H, LEE S H, HER S B, et al. Effects of surface treatments on the susceptibilities of low temperature degradation by autoclaving in zirconia[J]. J Biomed Mater Res B, 2012, 100B(5): 1334–1343.
[19] LIN J D, DUH J G, LO C L. Mechanical properties and resistance to hydrothermal aging of ceria- and yttria-doped tetragonal zirconia ceramics[J]. Mater Chem Phys, 2003, 77(3): 808–818.
[20] CHEVALIER J, GREMILLARD L, DEVILLE S. Low-temperature degradation of zirconia and implications for biomedical implants[J]. Annu Rev Mater Res, 2007, 37(1): 1–32.
[21] CAO Y, RAN R, WU X, et al. Ageing resistance of rhodium supported on CeO2-ZrO2 and ZrO2: Rhodium nanoparticle structure and Rh-support interaction under diverse ageing atmosphere[J]. Catal Today, 2017, 281: 490–499.
[22] TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics[J]. Dent Mater, 2018, 34(3): 365–375.
[23] DAHL P, KAUS I, ZHAO Z, et al. Densification and properties of zirconia prepared by three different sintering techniques[J]. Ceram Inter, 2007, 33(8): 1603–1610.
[24] CONRAD H, YANG D. Dependence of the sintering rate and related grain size of yttria-stabilized polycrystalline zirconia (3Y-TZP) on the strength of an applied DC electric field[J]. Mat Sci Eng A, 2011, 528(29–30): 8523–8529.
[25] MANICONE P F, ROSSI P, RAFFAELLI L. An overview of zirconia ceramics: Basic properties and clinical applications[J]. J Dent, 2007, 35(11): 819–826.
[26] XIE Z P, LI S, AN L N. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics[J]. J Am Ceram Soc, 2014, 97(4): 1012–1015.
[27] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: Rapid densification with limited grain growth[J]. J Am Ceram Soc, 2017, 100(7): 2774–2780.
[28] HAN Y, LI S, ZHU T B, et al. Enhanced properties of pure alumina ceramics by oscillatory pressure sintering[J]. Ceram Inter, 2018, 44(11): 5238–5241.
[29] HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: Densification trajectories and mechanical properties[J]. J Am Ceram Soc, 2018, 101(5): 1824–1829.
[30] CHEVALIER J, CALES B, DROUIN J M, et al. Low-temperature aging of Y-TZP ceramics[J]. J Am Ceram Soc, 1999, 82(8): 2150–2154.
[31] DEVILLE S, GREMILLARD L, CHEVALIER J, et al. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia[J]. J Biomed Mater Res B, 2005, 72B(2): 239–245.
[32] RAHAMAN M N. Ceramic Processing and Sintering, 1st. New York: Marcel Dekker, 2003.
[33] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Prog Mater Sci, 2006, 51(4): 427–556.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com