首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
微流挤出成形3D打印氧化锆陶瓷浆料的制备及性能
作者:孙文彬1  婧2 段国林1 
单位:(1. 河北工业大学机械工程学院 天津 300130 2. 天津科技大学机械工程学院 天津 300222) 
关键词:微流挤出成形 氧化锆 力学性能 黏度 
分类号:TQ174
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 提出一种陶瓷浆料制备方法,以提高氧化锆在浆料中的分散性和陶瓷坯体的强度,并对浆料的理化特性进行了分析。通过微流挤出成形工艺对陶瓷浆料挤出成形,并对坯体进行不同处理,分析其力学性能。结果表明:600 r/min球磨12 h后氧化锆粒径达到最小和zeta电位最大;pH为8.5时加入5%~6% (质量分数)的聚丙烯酸钠浆料黏度最低。此工艺制备的氧化锆浆料在挤出成形过程中流畅,符合微流挤出要求。成型坯体烧结效果也满足义齿力学性能要求,与其他工艺对比发现,打印坯体烧结后表面粗糙度和力学性能均良好。

 A preparation method to improve the dispersion of zirconia particles in the slurry and the strength of the ceramic body was proposed. The physicochemical properties of the slurry were analyzed. The ceramic slurry was extruded via micro-flow extrusion forming, and the mechanical properties of the printed body were analyzed. The results show that the size of zirconia particle reaches a minimum value and the zeta potential is maximum after ball milling at 600 r/min for 12 h. The slurry with 5%–6% sodium polyacrylate has the lowest viscosity at pH 8.5. Zirconia slurry prepared under the optimized conditions (i.e., grinding parameters and dispersant content) is smooth in the extrusion process and meets the requirements of micro-flow extrusion. The surface roughness and mechanical properties of sintered printed blank are satisfactory, thus meeting the mechanical performance requirements of denture.

基金项目:
河北省重点研究开发项目资助(17211808D);天津市自然科学基金资助(18JCQNJC75100);天津市企业科技特派员项目(18JCTPJC54800)。
作者简介:
参考文献:

 [1] URABA A, NEMOTO R, NOZAKI K, et al. Biomechanical behavior of adhesive cement layer and periodontal tissues on the restored teeth with zirconia RBFDPs using three-kinds of framework design: 3D FEA study[J]. J Prosthodont Res, 2018, 62(2): 227–233.

[2] WANG G G, MA J T, GAO Y, et al. Precisely controlling preparation of ceria–stabilized zirconia microspheres of ~100 μm by external gelation[J]. Int J Appl Ceram Technol, 2016, 13(5): 831–837.
[3] RUAN Y, HAN B, YU X, et al. Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure[J]. Constr Build Mater, 2018, 162: 663–673.
[4] WRIGT G J, YEOMANS J A. Three-step sintering of constrained yttria stabilised zirconia layers and its effect on microstructure and gas permeance[J]. J Eur Ceram Soc, 2009, 29(10): 1933–1938.
[5] FARROKHPAY S. A review of polymeric dispersant stabilisation of titania pigment[J]. Adv Colloid Interfac, 2009, 151(1–2): 24–32.
[6] TANURDJAJA S, TALLON C, SCALES P J, et al. Influence of dispersant size on rheology of non-aqueous ceramic particle suspensions[J]. Adv Powder Technol, 2011, 22(4): 476–481.
[7] GAN K, XU J, GAI Y, et al. In-situ coagulation of yttria–stabilized zirconia suspension via dispersant hydrolysis using sodium tripolyphosphate[J]. J Eur Ceram Soc, 2017, 37(15): 4868–4875.
[8] CHIN C H, MUCHTAR A, AZHARIC H, et al. Optimization of pH and dispersant amount of Y–TZP suspension for colloidal stability[J]. Ceram Int, 2015, 41(8): 9939–9946.
[9] SHIN Y, LEE D, LEE K, et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. J Ind Eng Chem, 2008, 14(4): 515–519.
[10] AMAT N F, MUCHTAR A, GHAZALI M J, et al. Suspension stability and sintering influence on yttria-stabilized zirconia fabricated by colloidal processing[J]. Ceram Int, 2014, 40(4): 5413–5419.
[11] LABANDA J, LLORENS J. Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions[J]. J Colloid Interf Sci, 2005, 289(1): 86-93.
[12] 李亚运, 司云晖, 熊信柏, 等. 陶瓷3D打印技术的研究与进展[J]. 硅酸盐学报. 2017, 45(6): 793-805.
LI Yayun, SI Yunhui, XIONG Xinbai, et al. J Chin Ceram Soc, 2017, 45(6): 793–805.
[13] 贾德昌, 何培刚, 苑景坤, 等. 铝硅酸盐聚合物及其复合材料研究进展[J]. 硅酸盐学报, 2017, 45(12): 1721–1737.
JIA Dechang, HE Peigang, YUAN Jingkun, et al. J Chin Ceram Soc, 2017, 45(12): 1721–1737.
[14] DING Y, JIANG Z, LI Y, et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal–assisted sol–gel process[J]. J Alloy Compd, 2018, 735: 2190–2196.
[15] GHAZANFARI A, LI W, LEU M C, et al. Additive manufacturing and mechanical characterization of high density fully stabilized zirconia[J]. Ceram Int, 2017, 43(8): 6082–6088.
[16] HE J, SHAO Z, KHAN D F, et al. Investigation of inhomogeneity in powder injection molding of nano zirconia[J]. Powder Technol, 2018, 328: 207–214.
[17] LI W, GHAZANFARI A, MCMILLEN D, et al. Characterization of zirconia specimens fabricated by ceramic on-demand extrusion[J]. Ceram Int, 2018, 44(11): 12245–12252.
[18] 朱东彬, 楚锐清, 张晓旭, 等. 陶瓷喷墨打印机理研究进展[J]. 机械工程学报, 2017, 53(13): 108–117.
ZHU Dongbin, CHU Qingrui, ZHANG Xiaoxu, et al. J Mech Eng–En (in Chinese), 2017, 53(13): 108–117.
[19] 罗斌, 夏华翅, 陈花玲, 等. 离子凝胶材料的三维打印工艺[J]. 机械工程学报, 2018, 54(17): 157–164.
LUO Bin, XIA Huachi, CHEN Hualing, et al. J Mech Eng–En (in Chinese), 2018, 54(17): 157–164.
[20] 焦宝祥, 丘泰, 李纯成, 等. 浆料的固相含量对注凝成型氧化锆增韧氧化铝陶瓷的影响[J]. 硅酸盐学报, 2004(09): 1165–1169.
JIAO Baoxiang, QIU Tai, LI Chuncheng, et al. J Chin Ceram Soc, 2004(09): 1165–1169. 
[21] MAHBUBULI M, ELCIOGLU E B, SAIDUR R, et al. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid[J]. Ultrason Sonochem, 2017, 37: 360–367.
[22] SHAO H, ZHAO D, LIN T, et al. 3D gel–printing of zirconia ceramic parts[J]. Ceram Int, 2017, 43(16): 13938–13942.
[23] CHUECA L D L. 3D printing with advanced ceramic materials (Master thesis)[D]. Universitat Politècnica de Catalunya, Barcelona Tech, Catalonia, Spain, 2016.
[24] SHAHZAD K, DECKERS J, ZHANG Z, et al. Additive manufacturing of zirconia parts by indirect selective laser sintering[J]. J Eur Ceram Soc, 2014, 34(1): 81–89.
[25] FAES M, VLEUGELS J, VOGELER F, et al. Extrusion-based additive manufacturing of ZrO2 using photoinitiated polymerization[J]. CIRP J Manuf Sci Technol, 2016, 14: 28–34.
[26] HARRER W, SCHWENTENWEIN M, LUBE T, et al. Fractography of zirconia-specimens made using additive manufacturing (LCM) technology[J]. J Eur Ceram Soc, 2017, 37(14): 4331–4338.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com