[1]MINH N Q. Solid oxide fuel cell technology-features and applications[J]. Solid State Ion, 2004, 174(1–4): 271–277.
[2]SINGH P, MINH N Q. Solid oxide fuel cells: technology status[J]. Inter J Appl Ceram Technol, 2010, 1(1): 5–15.
[3]DAMO U M, FERRARI M L, TURAN A, et al. Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy[J]. Energy, 2019,168(C): 235–246.
[4]YANG B C, KOO J, SHIN J W, et al. Direct alcohol-fueled low-temperature solid oxide fuel cells: A Review[J]. Energy Technology, 2019,7(1): 5–19.
[5]SAADABADI S A, THATTAI A T, FAN L, et al. Solid oxide fuel cells fueled with biogas: potential and constraints[J]. Renewable Energy, 2019,134: 194–214.
[6]HUSSAIN A M, WACHSMAN E D. Liquids-to-power using low-temperature solid oxide fuel cells[J]. Energy Technol, 2019,7(1): 20–32.
[7]WEI K, WANG X, BUDIMAN R A, et al. Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells[J]. J Mater Sci, 2018, 53(12): 8747–8765.
[8]苏峰. 质子导体固体氧化物燃料电池的低温化研究[D]. 合肥: 中国科学技术大学, 2016.
SU Feng. (in Chinese, dissertation). Hefei: University of science and technology of China, 2016.
[9]FRANDSEN H L, RAMOS T, FAES A, et al. Optimization of the strength of SOFC anode supports[J]. J Eur Ceram Soc, 2012, 32(5): 1041–1052.
[10]KIM Y J, LEE M C. Evaluation of the thermal and structural stability of planar anode-supported solid oxide fuel cells using a 10×10 cm2 single-cell test[J]. Inter J Hydrogen Energy, 2019, 44(11): 5517–5529.
[11]SONG B, RUIZ T E, BERTEI A, et al. Quantification of the degradation of Ni–YSZ anodes upon redox cycling. J Power Sources[J]. 2018, 374: 61–68.
[12]侯丽萍, 张暴暴. 固体氧化物燃料电池的系统结构及其研究进展[J]. 西安工程科技学院学报, 2007(2): 267–270.
HOU Liping, ZHANG Baobao. J Xi'an Univ Eng Sci Technol(in Chinese), 2007(2): 267–270.
[13]BAGOTSKY V S, SKUNDIN A M, VOLFKOVICH Y M. Handbook of Fuel Cells[M]. Chichester: Wiley, 2010: 8–11.
[14]SUZUKI M, SOGI T, HIGAKI, et al. Development of SOFC residential cogeneration system at Osaka Gas and Kyocera[J]. ECS Transact, 2007, 7(1): 27–30.
[15]LIM T H, PARK J L, LEE S B, et al. Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack[J]. Inter J Hydrogen Energy. 2010, 35(18): 9687–9692.
[16]官万兵, 王建新, 王泽深, 等. 一种平板型电极支撑的陶瓷电解质电池及其制备方法. [P]. CN Patent, CN106033819A. 2016–10–19.
GUAN Wanbing, WANG Jianxing, WANG Zheshen, et al. [P]. CN Patent, CN106033819A. 2016–10–19.
[17]LIU W, ZOU Z W, MIAO F X, et al. Anode-supported planar solid oxide fuel cells based on double-sided cathodes[J], Energy Technol, 2019, 7(2): 240–244.
[18]卜瑶, 官万兵, 刘武, 等. 稀薄气氛下中空对称双阴极固体氧化物燃料电池的特性研究[J]. 硅酸盐学报,2018, 46(6): 873–878.
BU Yao, GUAN Wanbing, LIU Wu, et al. J Chin Ceram Soc, 2018, 46(6): 873–878.
[19]邹志文, 刘武, 蒋龙, 等. 中空对称双阴极结构电池的高温抗氧化还原特性[J]. 硅酸盐学报, 2019, 47(3): 308–312.
ZOU Zhiwei, LIU Wu, JIANG Long, et al. J Chin Ceram Soc (in Chinese), 2019, 47(3): 308–312.
[20]LI X X, WANG Y D, LIU W, et al. Reliability of CO2 electrolysis by solid oxide electrolysis cells with a flat tube based on a composite double-sided air electrode[J]. Composites Part B, 2019, 166: 549–554.
|