首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
制备方法对量子点敏化太阳能电池CuS纳米晶对电极微观结构和性能的影响
作者:王启明   孙洪全   
单位:(哈尔滨理工大学材料科学与工程学院 哈尔滨 150040) 
关键词:硫化铜对电极 溶剂热法 原位法 微观结构 光电转换效率 
分类号:TM914
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用溶剂热法和原位法制备了两种具有不同形貌CuS对电极,并应用于量子点敏化太阳能电池(QDSC)中。结果表明:在原位法制备的CuS对电极中,由尺寸在20 nm左右的CuS纳米颗粒团聚成较大的不规则颗粒;在水热法制备的CuS对电极中,其微观结构为纳米棒和纳米片组成的复合结构。与Pt对电极相比,两种CuS对电极的电学性能均优于Pt对电极:原位法制备的CuS对电极的光电转换效率最大,为1.840%,界面传荷电阻Rct为3.346 Ω;溶剂热法制备的CuS对电极的光电转换效率为1.450%,界面传荷电阻Rct为2.609 Ω,Pt对电极的光电转换效率为0.940%,传荷电阻Rct为11.680 Ω。

 Two kinds of CuS counter electrodes with different morphologies applied to QDSC were prepared by a solvothermal method and an in-situ method, respectively. The prepared counter electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy (EIS) and current-voltage (J–V) curve measurement, respectively. According to the results by morphology analysis, CuS nanoparticles with a size of 20 nm can be agglomerated into larger and irregular particles in CuS counter electrode prepared by the in-situ method, and CuS counter electrode prepared by the solvothermal method consists of nanorods and nanoparticles in microstructrue. The results reveal that two kinds of CuS counter electrodes are superior to Pt counter electrode in the electrical performance. CuS counter electrode prepared by the in-situ method yields the maximum power conversion efficiency (i.e., 1.840%) and the charge transfer resistance Rct is 3.346 Ω. CuS counter electrode prepared by the solvothermal method yields a power conversion efficiency of 1.450% and Rct is 2.609 Ω. The corresponding parameters of Pt counter electrode are 0.940% and 11.680 Ω, respectively.

基金项目:
黑龙江省自然科学基金(E2018044);哈尔滨市优秀学科带头人项目(2017RAXXJ078)。
作者简介:
参考文献:

 [1] ALIAH H, BERNANDO B, PUSPITASARI F, et al. Dye Sensitized solar cells (DSSC) Performance Reviewed from the Composition of Titanium Dioxide (TiO2)/Zinc Oxide (ZnO)[J]. IOP Conf Series: Mater Sci Eng, 2018, 288: 012070.

[2] BAI B, KOU D, ZHOU W, et al. Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange[J]. J Power Sources, 2016, 318: 35–40.
[3] MINGXIAO W, XIAO L, YUDI W, et al. Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells[J]. Mater Chem A, 2015, 3(39): 10.1039.C5TA03682H. 
[4] HWANG I, YONG K. Counter electrodes for quantum-dot-sensitzed solar cells[J]. Chemelectrochem, 2015, 2(5): 634–653.
[5] ZHANG Y, SUN H, ZHANG J, et al. The performance of QDSCs based on 3D structural counter electrodes of multi-wall carbon nanotubes and nanographite[J]. J Mater Sci: Mater Electr, 2018.
[6] ZHAODONG W, CHAOSHUAI W, MINGZHI Q, et al. Preparation of well-proportioned SnS hollow microsphere on graphene and the application in dye-sensitized solar cells[J]. Mater Lett, 2018: S0167577X18313600
[7] BANERGEE A, UPADHYAY K, BHATNAGAR S, et al. Nickel cobalt sulfide nanoneedle array as an effective alternative to Pt as a counter electrode in dye sensitized solar cells[J]. RSC Adv, 2014, 4(16): 8289–8294.
[8] QIONGZHE Y, YASHUAI P, QIWEI J. NiS submicron cubes with efficient electrocatalytic activity as the counter electrode of dye-sensitized solar cells[J]. Royal Soc Open Sci, 2018, 5(8): 180186-.
[9] XU J, XIAO J, DONG J, et al. A new in-situ preparation method to CuS electrodes for CdS/CdSe co-sensitized solar cells[J] . Electrochim Acta, 2014, 127: 180–185.
[10] LIN C Y, TENG C Y, LI T L, et al. Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells[J]. J Mater Chem A, 2012, 1.
[11] ZHANG Y, SHI C, DAI X, et al. Pyrolysis preparation of Cu2ZnSnS4 thin film and its application to counter electrode in quantum dot-sensitized solar cells[J]. Electrochim Acta, 2014, 118(Complete): 41–44.
[12] XU J, YANG X, YANG Q D, et al. Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells[J]. J Phys Chem C, 2012, 116(37): 19718–19723.
[13] XU J, YANG X, WONG T L, et al. Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells[J]. Nanoscale, 2012, 4.
[14] ZHU J, YU X C, WANG S M, et al. Application of Cu2S counter electrode in quantum dot-sensitized solar cells[J]. Acta Physico-Chim Sin, 2013, 29(3): 533–538.
[15] JIANG Y, ZHANG X, GE Q Q, et al. ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum- dot-sensitized solar cells[J]. Nano Letters, 2014, 14(1): 365–371.
[16] XU Z, LI T, LIU Q, et al. Controllable and large-scale fabrication of rectangular CuS network films for indium tin oxide-and Pt-free flexible dye-sensitized solar cells[J]. Solar Energy Mater Solar Cells, 2018: S0927024817306736.
[17] ZHANG Y, WANG D, WANG Q, et al. One-step synthesized CuS and MWCNTs composite as a highly efficient counter electrode for quantum dot sensitized solar cells[J]. Mater Des, 2018, 160: 870–875.
[18] KE W, FANG G, LEI H, et al. An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells[J]. J Power Sources, 2014, 248: 809–815.
[19] XIA R, WANG S, DONG W, et al. A new probe into thin copper sulfide counter electrode with thickness below 100 nm for quantum dot-sensitized solar cells[J]. Electrochim Acta, 2016: S0013468616308465.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com