首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
ZIF-67及其母液衍生Co3O4催化氨硼烷水解制氢
作者:  刘洪燕 王东升   马丽文 
单位:(廊坊师范学院化学与材料科学学院 河北 廊坊 065000) 
关键词:金属有机骨架 四氧化三钴 氨硼烷 催化水解 制氢 
分类号:TQ11.2, TK91
出版年,卷(期):页码:2020,48(3):0-0
DOI:
摘要:

 采用常规液相沉淀反应合成了沸石咪唑酯金属有机骨架化合物ZIF-67,并对母液进行浓缩结晶以回收钴基化合物。通过高温焙烧的方式将ZIF-67及其母液转化为2种Co3O4(记作Co3O4-S和Co3O4-L)作为氨硼烷水解的催化剂前驱体。考察了反应液中氨硼烷浓度、催化剂浓度和反应温度对体系产氢速率的影响,并进行动力学分析。结果表明:Co3O4-S为多孔多面体结构而Co3O4-L为纳米颗粒;增加反应液中氨硼烷浓度和催化剂浓度有助于提升体系的产氢速率;经4次循环使用后,Co3O4-S催化产氢速率无衰减,Co3O4-L催化产氢速率为初始值的78%。

 ZIF-67 as one kind of zeolitic imidazolate frameworks was synthesized by a conventional precipitation method, and the mother liquor was concentrated and crystallized to recover cobalt-based compounds. For AB hydrolysis, two kinds of Co3O4 catalyst precursors (i.e., Co3O4-S and Co3O4-L) were prepared from the ZIF-67 and recovered compounds via calcination treatment, respectively. The morphology and phase composition of the samples were characterized by field-emission scanning electron microscopy and X-ray diffraction, respectively. Effects of AB and catalyst concentration and reaction temperature on the hydrogen generation rates and kinetics were investigated. The results show that Co3O4-S has a porous and polyhedral structure, and Co3O4-L is composed of nanoparticles. In addition, increasing AB and catalyst concentration can enhance the hydrogen generation rates. The maximum hydrogen production rates do not decline in the presence of Co3O4-S, but decrease to 78% of the initial level in the presence of Co3O4-L after recycling for four times.

基金项目:
河北省自然科学基金(B2017408042)。
作者简介:
参考文献:

 [1] AKBAYRAK S, ÖZKAR S. Ammonia borane as hydrogen storage materials[J]. Int J Hydrogen Energy, 2018, 43(40): 1859218606.

[2] DEMIRCI U B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2017, 42(15): 997810013.
[3] OLU P Y, DESCHAMPS F, CALADRELLA G, et al. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells[J]. J Power Sources, 2015, 297: 492503.
[4] CHOU C, CHEN B, LEE D. Hydrogen storage in a chemical hydride fuel system containing ammonia borane and NiCo/r-GO catalyst[J]. Energy Proced, 2014, 61: 142145.
[5] DIWAN M, HANNA D, VARMA A. Method to release hydrogen from ammonia borane for portable fuel cell applications[J]. Int J Hydrogen Energy, 2010, 35(2): 577584.
[6] SARICA E, AKBAYRAK S, ÖZKAR S. Ruthenium(0) nanoparticles supported on silica coated Fe3O4 as magnetically separable catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43(32): 1512415134.
[7] XU D, WANG W D, TIAN M, et al. Immobilization of Pt nanoparticles in hollow mesoporous silica nanocapsules: An aggregation- and leaching-resistant catalyst[J]. J Coll Inter Sci, 2018, 516: 407415.
[8] METIN Ö, DURAP F, AYDEMIR M, et al. Palladium(0) nanoclusters stabilized by poly (4-styrenesulfonic acid-co-maleic acid) as an effective catalyst for Suzuki-Miyaura cross-coupling reactions in water[J]. J Mol Catal A, 2011, 337(1): 3944.
[9] YOUSEF A, BROOKS R M, EL-HALWANY M M, et al. A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J]. Int J Hydrogen Energy, 2016, 41(1): 285293.
[10] FERNANDES R, PATEL N, MIOTELLO A, et al. Dehydrogenation of Ammonia Borane with transition metal-doped Co-B alloy catalysts[J]. Int J Hydrogen Energy, 2012, 37(3): 23972406.
[11] EOM K, CHO K, KWON H. Hydrogen generation from hydrolysis of NH3BH3 by an electroplated Co-P catalyst[J]. Int J Hydrogen Energy, 2010, 35(1): 181186.
[12] RAKAP M, KALU E E, ÖZKAR S. Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on Pd-activated TiO2 by electroless deposition[J]. Int J Hydrogen Energy, 2011, 36(1): 254261.
[13] COSKUNER FILIZ B, FIGEN A K, PISKIN S. The remarkable role of metal promoters on the catalytic activity of CoCu based nanoparticles for boosting hydrogen evolution: Ammonia borane hydrolysis[J]. App Catal B, 2018, 238: 365380.
[14] LI C, WANG D, WANG Y, et al. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane[J]. J Coll Inter Sci, 2018, 524: 2531.
[15] KRISHNAN P, HSUEH K L, YIM S D. Catalysts for the aqueous borohydride solutions to produce hydrogen for PEM fuel cell[J]. App Catal B, 2007, 77(12): 206214.
[16] SIMAGINA V I, KOMOVA O V, OEROVA A M, et al. Cobalt oxide catalyst for hydrolysis of sodium borohydride and ammonia borane[J]. App Catal A, 2011, 394(1): 8692.
[17] BARAKAT N A M. Effective Co-Mn-O nanofibers for ammonia borane hydrolysis[J]. Mater Lett, 2013, 106: 229232.
[18] LU D, LIAO J, ZHONG S, et al. Cu0.6Ni0.4Co2O4 nanowires, a novel noble-metal-free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production[J]. Int J Hydrogen Energy, 2018, 43(11): 55415550.
[19] 胡玉娟. 金属@二氧化硅核壳纳米结构合成及其催化氨硼烷制 氢[D]. 南昌: 江西师范大学, 2015: 2527.
HU Y J. Synthesis of metal@silica coreshell nanostructures for hydrogen production from ammonia borane (in Chinese, dissertation). Nanchang Normal University, 2015: 2527.
[20] GUO X, XING T, LOU Y, et al. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution[J]. J Solid State Chem, 2016, 235: 107112.
[21] QIAN J, SUN F, QIN L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Mate Lett, 2012, 82: 220223.
[22] KRISHNAN P, ADVANI S G, PRASAD A K. Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells[J]. Int J Hydrogen Energy, 2008, 33(23): 70957102.
[23] WEI L, DONG X, MA M, et al. Co3O4 hollow fiber: An efficient catalyst precursor for sodium borohydride to generate hydrogen[J]. Inter J Hydr Energy, 2018, 43(3): 15291533.
[24] GROVEN L J, PFEIL T L, POURPOINT T L. Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis[J]. Int J Hydrogen Energy, 2013, 38(15): 63776380.
[25] BASU S, BROCKMAN A, GAGARE P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. J Power Sources, 2009, 188(1): 238243.
[26] AKBAYRAK S, GENCTURK S, MORKAN I, et al. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Rsc Adv, 2014, 4(26): 1374213748.
[27] MOHAJERI N, T-RAISSI A, ADEBIYI O. Hydrolytic cleavage of ammonia-borane complex for hydrogen production[J]. J Power Sources, 2007, 167(2): 482485.
[28] ZHUANG D W, DAI H B, ZHONG Y J, et al. A new reactivation method towards deactivation of honeycomb ceramic monolith supported cobalt-molybdenum-boron catalyst in hydrolysis of sodium borohydride[J]. Int J Hydrogen Energy, 2015, 40(30): 93739381.
[29] KIM D R, CHO K W, CHOI Y I, et al. Fabrication of porous Co-Ni-P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution[J]. Int J Hydrogen Energy, 2009, 34(6): 26222630.
[30] WANG Y, QI K, WU S, et al. Preparation, characterization and catalytic sodium borohydride hydrolysis of nanostructured cobalt-phosphorous catalysts[J]. J Power Sources, 2015, 284: 130137.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com