首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多孔Fe2O3-Ag纳米复合材料的制备及其在表面增强Raman散射光谱中应用
作者:付紫微1 2 逯夏平1  倩1 孔宪明1 杨占旭1 
单位:(1. 辽宁石油化工大学化学化工与环境学部 辽宁 抚顺 113001 2. 贵州梅岭电源有限公司 特种化学电源国家重点实验室 贵州 遵义 563000) 
关键词:多孔三氧化二铁 银纳米粒子 表面增强Raman光谱 吸附检测 
分类号:O6
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 以多孔α-Fe2O3作为固相载体,通过水热合成法在α-Fe2O3孔道内沉积银纳米粒子。测试4种不同硝酸银用量时Fe2O3-Ag复合物的表面增强Raman散射光谱性能(SERS)。利用扫描电子显微镜、透射电子显微镜、X射线衍射和N2吸附等表征手段对Fe2O3-Ag复合物结构及组成进行分析表征。结果表明,当银纳米粒子的负载量为6.5%时(质量分数),Fe2O3-Ag纳米复合物的比表面积为26.57 m2/g,增强因子可以达到102~103,SERS活性最好。所制备的Fe2O3-Ag纳米复合物具有良好的SERS活性和吸附性能,可以进一步应用于其他待测物的吸附检测。

基金项目:
国家自然科学基金面上项目(21671092);辽宁省自然科学基金指导计划项目(20180550246);辽宁省“兴辽英才计划”项目(XLYC1802057)。
作者简介:
参考文献:

 [1]段涛, 彭同江, 唐永建. 表面增强拉曼光谱技术在纳米材料研究中的新进展[J]. 材料导报, 2008, 22(11): 93–97. 

DUAN Tao, PENG Tongjiang, TANG Yongjian. Mater Rev (in Chinese), 2008, 22(11): 93–97.
[2]HAO J, HAN M J, HAN S, et al. SERS detection of arsenic in water: A review[J]. J Environment Sci, 2015, 36(10): 152–162. 
[3]封昭, 周骏, 陈栋, 等. 基于金/银纳米SERS特性的超灵敏前列腺特异性抗原检测[J]. 发光学报, 2015, 36(9): 1064–1070.
FENG Shao, ZHOU Jun, CHEN Dong, et al. Chin J Lumin (in Chinese), 2015, 36(9): 1064–1070. 
[4]LIU H, YANG L, LIU J. Three-dimensional SERS hot spots for chemical sensing: Towards developing a practical analyzer[J]. Trac-Trend Anal Chem, 2016, 80: 364–372. 
[5]CHEN C Y, HSU L J, HSIAO P H, et al. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires[J]. Appl Surf Sci, 2015, 355: 197–202.
[6]EDUARDO G R, RAMON A A P, LUCA G. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: From fundamental studies to real-life applications[J]. Chem Soc Rev, 2018, 47: 4909–4923.
[7]洪茜, 刘木华, 袁海超, 等. 基于表面增强拉曼光谱的鸭肉中螺旋霉素残留检测[J]. 发光学报, 2015, 36(12): 1464–1468.
HONG Qian, LIU Muhua, YUAN Haichao, et al. Chin J Lumin (in Chinese), 2015, 36(12): 1464–1468.
[8]RADZOL A R M, LEE K Y, MANSOR W, et al. Nano-scale characterization of surface enhanced Raman spectroscopic substrates[J]. Procedia Eng, 2012, 41: 867–873.
[9]CHEN L, LUO L, CHEN Z, et al. ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection[J]. J Phys Chem C, 2009, 114(1): 93–100.
[10]DENYS N, VALENTINAS S, BORIS S, et al. Graphene-enhanced Raman imaging of TiO2 nanoparticles[J]. Nanotechnology, 2012, 23(46): 1–7.
[11]LOU X W, DENG D, LEE J Y, et al. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties[J]. J Mater Chem, 2008, 18(37): 4397–4401.
[12]HAN B, CHOI N, KIM K H, et al. Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor[J]. J Phys Chem C, 2011, 115(14): 6290–6296.
[13]ZHAI Y, ZHAI J, WANG Y, et al. Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering[J]. J Phys Chem C, 2009, 113(17): 7009–7014.
[14]LI Q X,YAP B S M, RONG W, et al. Catecholamine-induced electroless metallization of silver on silica@polymer hybrid nanospheres and their catalytic applications[J]. Ind Eng Chem Res, 2014, 53(8): 3116–3124.
[15]陈平, 王晨, 王瑶, 等. MCM-41介孔分子筛合成与改性研究进展[J]. 硅酸盐通报, 2017, 36(9): 3024–3029.
CHEN Ping, WANG Chen, WANG Yao, et al. Bull Chin Ceramic Soc (in Chinese), 2017, 36(9): 3024–3029. 
[16]李忠燕, 涂永善, 杨朝合. MCM-41介孔分子筛改性研究新进展[J]. 工业催化, 2005, 13(2): 12–18.
LI Zhongyan, TU Yongshan,YANG Zhaohe. Ind Catal (in Chinese), 2005, 13(2): 12–18.
[17]NIE S M, LIPSCOMB L A, YU N T. Surface-enhanced hyper-Raman spectroscopy[J]. Appl Spectrosc Rev, 1991, 26(3): 203–276. 
[18]MAJOUBE M, HENRY M. Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine 6G[J]. Spectrochim Acta, Part A, 1991, 47(9/10): 1459–1466.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com