首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于TiO2/多壁碳纳米管复合光阳极和SnO2/多壁碳纳米管非铂对电极的染料敏化太阳能电池电子传输的改善
作者:刘青龙 王晓宇 赵丽萍 金立国 
单位:(哈尔滨理工大学材料科学与工程学院 哈尔滨 150040) 
关键词:光阳极 多壁碳纳米管 染料敏化太阳能电池 电流体动力学 
分类号:TM914
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 为了提高TiO2光阳极的电子传输速率,在TiO2中负载了多壁碳纳米管(MWCNTs)。采用溶胶–凝胶水热法制备了TiO2/MWCNTs复合溶胶,利用电流体动力学方法制备了均匀的TiO2/MWCNTs复合薄膜,并用TiCl4对薄膜进行了优化。用扫描电子显微镜、透射电子显微镜、X射线衍射仪和紫外可见吸收光谱仪对样品进行了表征分析。利用电化学阻抗谱和电流密度–电压曲线分析了基于TiO2/MWCNTs复合光阳极和SnO2/MWCNTs对电极的染料敏化太阳能电池(DSSC)的光电性能。结果表明,MWCNTs的加入极大地加速了电子在薄膜中的传输,减少了电子与氧化态染料和I3–的复合;基于CNT-0.12(质量分数0.12%)复合光阳极的DSSC性能最佳(VOC=0.70 V,JSC=13.0 mA/cm2,ηFF=0.64,η=5.80%),与基于纯TiO2光阳极的DSSC(η=4.44 %)相比,能量转换效率提高了30.6%。

基金项目:
国家自然科学基金(21273060)。
作者简介:
参考文献:

 [1] HASANUZZAMAN M, RAHIM N A, SAIDUR R, et al. Energy savings and emissions reductions for rewinding and replacement of industrial motor[J]. Energy, 2011, 36(1): 233–240.

[2] O’REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737
[3] LONGO C, FREITAS J, PAOLI M A D. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte[J]. J Photochem Photobio A, 2003, 159(1): 33–39.
[4] NAZEERUDDIN M K, KAY A, RODICIO I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J Am Chem Soc, 1993, 115(14): 6382–6390.
[5] LI J, WANG L, KONG X, et al. A simple and efficient method using polymer dispersion to prepare controllable nanoporous TiO2 anodes for dye-sensitized solar cells[J]. Langmuir, 2009, 25(18): 11162–11167.
[6] MEHMOOD U, AL-AHMED A, AFZAAL M, et al. Enhancement of the photovoltaic performance of dye-sensitized solar cells by cosensitizing TiO2 photoanode with uncapped PbS nanocrystals and ruthenizer[J]. IEEE J Photovolt, 2018, 8(2): 512–516.
[7] CHIU W H, LEE C H, CHENG H M, et al. Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells[J]. Energ Environ Sci, 2009, 2(6): 694–698.
[8] LI Z, ZHOU Y, SUN R, et al. Nanostructured SnO2 photoanode-based dye-sensitized solar cells[J]. Chin Sci Bull, 2014, 59(18): 2122–2134.
[9] BHATTI K A, KHAN M I, SALEEM M, et al. Analysis of multilayer based TiO2 and ZnO photoanodes for dye-sensitized solar cells[J]. Mater Res Express, 2019, 6(7): 075902.
[10] GAO C, LI X, LU B, et al. A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells[J]. Nanoscale, 2012, 4(11): 3475–3481.
[11] SAURDI I, SHAFURA A K, MAMAT M H, et al. Electrical properties of TiO2 at different deposition frequencies and their application in ZnO/TiO2 based dye-sensitized solar cells[J]. AIP Conference Proceedings, 2018, 1963(1): 020036.
[12] MOJADDAMI M, MOHAMMADI M R, MADAAH HOSSEINI H R. Improved efficiency of dye-sensitized solar cells based on a single layer deposition of skein-like TiO2 nanotubes[J]. J Am Ceram Soc, 2014, 97(9): 2873–2879.
[13] GU J, KHAN J, CHAI Z, et al. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells[J]. J Power Sources, 2016, 303: 57–64.
[14] BAKHSHAYESH A M, MOHAMMADI M R, DADAR H, et al. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer[J]. Electrochim Acta, 2013, 90: 302–308.
[15] HONG C K, JUNG Y H, KIM H J, et al. Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells[J]. Curr Appl Phys, 2014, 14(3): 294–299.
[16] FAN K, ZHANG W, PENG T, et al. Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency[J]. J Phys Chem C, 2011, 115(34): 17213–17219.
[17] SAIFUDDIN N, RAZIAH A Z, JUNIZAH A R. Carbon nanotubes: A review on structure and their interaction with proteins[J]. J Chem, 2013: 8.
[18] BATMUNKH M, BIGGS M J, SHAPTER J G. Carbon nanotubes for dye-sensitized solar cells[J]. Small, 2015, 11(25): 2963–2989.
[19] YANG L, AN Y, DAI B, et al. Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis[J]. Korean J Chem Eng, 2017, 34(2): 476–483. 
[20] MEHMOOD U, MALAIBARI Z, RABANI F A, et al. Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells[J]. Electrochim Acta, 2016, 203: 162–170.
[21] LEGHRIB R, FELTEN A, PIREAUX J J, et al. Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature[J]. Thin Solid Films, 2011, 520(3): 966–970.
[22] KIM T, SRIDHARAN I, ZHU B, et al. Effect of CNT on collagen fiber structure, stiffness assembly kinetics and stem cell differentiation[J]. Mater Sci Eng C, 2015, 49: 281–289.
[23] ARTUKOVIC E, KAEMPGEN M, HECHT D S, et al. Transparent and flexible carbon nanotube transistors[J]. Nano Lett, 2005, 5(4): 757–760.
[24] YAN D J, ZHU X D, MAO Y C, et al. Hierarchically organized CNT@TiO2@Mn3O4 nanostructures for enhanced lithium storage performance[J]. J Mater Chem A, 2017, 5(32): 17048–17055.
[25] KILIC B, TURKDOGAN S, ASTAM A, et al. Preparation of carbon nanotube/TiO2 mesoporous hybrid photoanode with iron pyrite (FeS2) thin films counter electrodes for dye-sensitized solar cell[J]. Sci Rep, 2016, 6: 27052.
[26] YU J, FAN J, CHENG B. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films[J]. J Power Sources, 2011, 196(18): 7891–7898.
[27] DU P, SONG L, XIONG J, et al. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode[J]. Electrochim Acta, 2013, 87: 651–656.
[28] JIN Z, ZHANG M, WANG M, et al. Metal selenides as efficient counter electrodes for dye-sensitized solar cells[J]. Accounts Chem Res, 2017, 50(4): 895–904.
[29] ZHANG J, WU W, ZHANG C, et al. Prussian-blue analog-derived Co3S4/MoS2 porous nanocubes as enhanced Pt-free electrode catalysts for high-efficiency dye-sensitized solar cells[J]. Appl Surf Sci, 2019, 484: 1111–1117.
[30] MURUGADOSS V, PANNEERSELVAM P, YAN C, et al. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell[J]. Electrochim Acta, 2019, 312: 157–167.
[31] PAN Y, CHENYANG X U, HONG L, et al. Preparation and properties of carbon counter electrodes for dye-sensitized solar cells[J]. J Chin Ceram Soc, 2011, 39(12):1993–1996.
[32] WANG X, XIE Y, JIAO Y, et al. Carbon nanotubes in situ embedded with NiS nanocrystals outperform Pt in dye-sensitized solar cells: Interface improved activity[J]. J Mater Chem A, 2019, 7(17): 10405–10411.
[33] LIU Y X, LIU Q L, WANG X Y, et al. SnO2/carbon naotubes nanocomposite as Pt-free counter electrode used in dye-sensitized solar cells[J]. J Funct Mater, 2019, 50(1): 144–148.
[34] CAI J, CHEN Z, LI J, et al. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode[J]. AIP Adv, 2015, 5(2): 027118.
[35] GHARTAVOL H M, MOHAMMADI M R, AFSHAR A, et al. Efficient dye-sensitized solar cells based on CNT-derived TiO2 nanotubes and Nb-doped TiO2 nanoparticles[J]. Rsc Adv, 2016, 6(103): 101737–101744.
[36] WANG Q, MOSER J E, GRÄTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J Phys Chem B, 2005, 109(31): 14945–14953. 
[37] DU P, SONG L, XIONG J, et al. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode[J]. Electrochim Acta, 2013, 87: 651–656.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com