首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
膜厚与紫外光辐照对反应溅射法制备的F掺杂SnO2薄膜结构与光电性能的影响
作者:祝柏林 宋肖肖   易昌鸿   
单位:(武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081) 
关键词:反应溅射 氟掺杂氧化锡薄膜 透明导电性能 紫外光辐照 
分类号:TN304
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:以Sn+SnF2为靶材,在衬底温度为150和300 ℃通过反应磁控溅射法制备了厚度为20~400 nm的F掺杂SnO2(FTO)薄膜,并通过紫外光(UV)辐照对2种厚度(20和240 nm)的样品进行了后处理,研究了膜厚和UV辐照时间对薄膜结构与透明导电性能的影响。结果表明:随着膜厚或衬底温度的增加,FTO薄膜结晶度提高,但择优取向保持为(211)面;与此同时,薄膜中压应力增大,而导电性能下降。随着膜厚的增加,薄膜透光性先降低后增加,而其禁带宽度(Eg)先明显增加后趋于稳定。增大衬底温度可增大薄膜的透光性和Eg。UV辐照可明显提高薄膜的载流子浓度,从而增强薄膜的导电性能,但对薄膜的透光性无明显改变。另外,讨论了膜厚引起FTO薄膜结构及光电性能变化的相关机制,分析了UV辐照对FTO薄膜光电性能的改善机理。

基金项目:
湖北省大学生创新创业训练计划项目(201610488042)。
作者简介:
参考文献:

 [1]LEE K M, HOU M Y, SURYANARAYANAN V, et al. Sequential preparation of dual-layer fluorine-doped tin oxide films for highly efficient perovskite solar cells[J]. Chem Sus Chem, 2018, 11: 3234?3242.

[2]YU X, YU X, ZHANG J, et al. Efficient inverted polymer solar cells based on surface modified FTO transparent electrodes [J]. Sol Energ Mater Sol C, 2015, 136: 142?147.
[3]OUERFELLI J, DJOBO S O, BERNEDE J C, et al. Organic light emitting diodes using fluorine doped tin oxide thin films deposited by chemical spray pyrolysis as anode[J]. Mater Chem Phys, 2008, 112(1): 198?201.
[4]YU J Y, WANG L K, NIU X Y, et al. Effect of hydrogen peroxide on photoelectric properties of high-transmittance FTO films prepared by spray pyrolysis[J]. Surf Coat Technol, 2019, 361: 308?313.
[5]林威豪, 马晔城, 陈胜男, 等. AACVD方法制备FTO薄膜及其结构与光电性能研究[J]. 燕山大学学报, 2018, 42(3): 234?239.
LIN Weihao, MA Yecheng, CHEN Shengnan, et al. J Yanshan Univ(in Chinese), 2018, 42(3): 234?239.
[6]史晓慧, 许珂敬. 溶胶?凝胶?蒸镀法制备高性能FTO薄膜[J]. 物理学报, 2016, 65(13): 138101(1?10).
SHI Xiaohui, XU Kejing. Acta Phys Sin(in Chinese), 2016, 65(13): 138101(1?10).
[7]WU F Y, TONG X R, ZHAO Z, et al. Oxygen-controlled structures and properties of transparent conductive SnO2:F films[J]. J Alloy Compd, 2017, 695: 765?770.
[8]BANYAMIN Z Y, KELLY P J, WEST G, et al. Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering[J]. Coatings, 2014, 4(4): 732?746.
[9]MARUYAMA T, AKAGI H, Fluorine-doped tin dioxide thin films prepared by radio-frequency magnetron sputtering[J]. J Electrochem Soc, 1996, 143(1): 283?287.
[10]LIAO B H, KUO C C, CHEN P J, et al. Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target[J]. Appl Opt, 2011, 50 (9): C106?C110. 
[11]JAGER T, BISSIG B, DOBELI M, et al. Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing[J]. Thin Solid Films, 2014, 553: 21?25.
[12]MIENTUS R, ELLMER K. Structural, electrical and optical properties of SnO2?x:F-layers deposited by DC-reactive magnetron-sputtering from a metallic target in Ar-O2/CF4 mixtures[J]. Surf Coat Technol, 1998, 98 (1?3): 1267?1271.
[13]STJERNA B, OLSSON E, GRANQVIST C G, Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo[J]. J Appl Phys, 1994, 76(6): 3797?3817.
[14]CONSONNI V, REY G, ROUSSEL H, et al. Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy[J]. J Appl Phys, 2012, 111(3): 033523?033529.
[15]ELANGOVAN E, SINGH M P, RAMAMURTHI K, Studies on structural and electrical properties of spray deposited SnO2:F thin films as a function of film thickness[J]. Mater Sci Eng B, 2004, 113(2): 143?148.
[16]BANG J H, LEE N, MIRZAEI A, et al. Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films[J]. Ceram Int, 2019, 45( 6): 7723?7729.
[17]LI B J, WANG Y Y, HUANG L J, et al. Influences of ultrasonic vibration on morphology and photoelectric properties of F-doped SnO2 thin films during laser annealing[J]. Appl Surf Sci, 2018, 458: 940?948.
[18]WANG X J, ZHANG Y, The effects of UV radiation on the structure and properties of AZO thin films deposited on quartz glass by magnetron sputtering[J]. Mater Lett, 2017, 188: 257?259.
[19]杨玉婷, 祝柏林, 谢挺, 等. 射频反应磁控溅射制备的SnO2及SnO2:F薄膜结构与透明导电性能[J]. 硅酸盐学报, 2017, 45(4): 472?477.
YANG Yuting, ZHU Bailin, XIE Ting, et al. J Chin Ceram Soc, 2017, 45(4): 472?477.
[20]ZHU B L, ZHAO X, HU W C, et al. Structural, electrical, and optical properties of F-doped SnO or SnO2 films prepared by RF reactive magnetron sputtering at different substrate temperatures and O2 fluxes[J]. J Alloy Compd, 2017, 719: 429?437.
[21]BANSAL S, PANDYA D K, KASHYAP S C, et al. Growth ambient dependence of defects, structural disorder and photoluminescence in SnO2 films deposited by reactive magnetron sputtering[J]. J Alloy Compd, 2014, 583: 186?190.
[22]MONTERO J, GUILLEN C, GRANQVIST C G, et al. Preferential orientation and surface oxidation control in reactively sputter deposited nanocrystalline SnO2:Sb films-electrochemical and optical results[J]. ECS J Solid State Sc, 2014, 3(11): N151?N153.
[23]KORBER C, SUFFNER J, KLEIN A. Surface energy controlled preferential orientation of thin films[J]. J Phys D: Appl Phys, 2010, 43(5): 055301?055304.
[24]BROUSSEAU J L, BOURQUE H, TESSIER A, et al. Electrical properties and topography of SnO2 thin films prepared by reactive sputtering[J]. Appl Surf Sci, 1997, 108(3): 351?358. 
[25]ZHANG S Y, LI H L, ZHOU S H, et al. Estimation thermal expansion coefficient from lattice energy for inorganic crystals[J]. Jpn J Appl Phys, 2006, 45(11): 8801?8804.
[26]KIM H, HORWITZ J S, KUSHTO G, et al. Effect of film thickness on the properties of indium tin oxide thin films[J]. J Appl Phys, 2000, 88(10): 6021?6025.
[27]ZHU B L, WANG J, ZHU S J, et al. Thickness study of AZO films by RF sputtering in Ar+H2 atmosphere at room temperature[J]. Phys Status Solidi A, 2012, 209(7): 1251?1258.
[28]MA H L, HAO X T, MA J, et al. Thickness dependence of properties of SnO2:Sb films deposited on flexible substrates[J]. Appl Surf Sci, 2002, 191(1/4): 313?318.
[29]MINAMI T, NANTO H, TAKATA S. Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates[J]. Jpn J Appl Phys, 1988, 27(3): L287?L289. 
[30]BANSAL S, PANDYA D K, KASHYAP S C. Electron transport and defect structure in highly conducting reactively sputtered ultrathin tin oxide films[J]. Appl Phys Lett, 2014, 104(8): 082108?082111.
[31]KO J H, KIM I H, KIM D, et al. Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films[J]. Thin Solid Films, 20016, 494 (1/2): 42?46.
[32]LIU C P, HO C Y, KWOK C K, et al. High mobility transparent amorphous CdO-In2O3 alloy films synthesized at room temperature[J]. Appl Phys Lett, 2017, 111(7): 072108?072111.
[33]MURAOKA Y, TAKUBO N, HIROI Z, Photoinduced conductivity in tin dioxide thin films[J]. J Appl Phys, 2009, 105(10): 103702?103708.
[34]DJAMIL R, AICHA K, SOUIFI A, et al. Effect of annealing time on the performance of tin oxide thin films ultraviolet photodetectors[J]. Thin Solid Films, 2017, 623: 1?7.
[35]TIERNEY P, ENNIS T J, ALLEN A, et al. The role of mid-band gap defect levels in persistent photoconductivity in RF sputtered SnO2 thin films[J]. Thin Solid Films, 2016, 603: 50?55.
[36]BRINZARI V, Mechanism of band gap persistent photoconductivity (PPC) in SnO2 nanoscrystalline films: Nature of local states, simulation of PPC and comparison with experiment[J]. Appl Surf Sci, 2017, 411: 437?448.
[37]HERKLOTZ A, RUS S F, WARD T Z. Continuously controlled optical band gap in oxide semiconductor thin films[J]. Nano Lett. 2016, 16: 1782?1786.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com