首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
电场和应变对砷烯/WS2 van der Waals异质结电子结构的影响
作者: 伟1 戴宪起2  芳3 
单位:(1. 河南城建学院数理学院 河南 平顶山 467036 2. 河南师范大学物理与材料科学学院 河南 新乡 453007  3. 平顶山学院电气与机械工程学院 河南 平顶山 467000) 
关键词:能带排列 外电场 应变 带隙 砷烯/二硫化钨van der Waals异质结 
分类号:O469
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:采用基于密度泛函理论的第一性原理计算,研究了砷烯/WS2 van der Waals异质结的稳定性和电子结构,同时考虑了电场和应变效应。计算结果表明:砷烯/WS2异质结为Ⅱ型能带排列,具有间接带隙。外电场不仅可以调节异质结的带隙宽度而且可以导致异质结由Ⅱ型能带排列转变为Ⅰ型能带排列。应变可以有效调节异质结的带隙宽度,但是不能导致能带排列类型的转变,异质结始终为Ⅱ型能带排列。

基金项目:
国家自然科学基金 (61674053,U1704136);河南省科技攻关项目(182102210222)。
作者简介:
参考文献:

 [1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183–191.

[2] SCHWIERZ F. Graphene transistors[J]. Nat Nanotechnol, 2010, 5: 487–496.
[3] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147–150.
[4] YIN Z, LI H, JIANG L, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6: 74–80.
[5] LI L, YU Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9: 372–377.
[6] GONG C, ZHANG H, WANG W, et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors[J]. Appl Phys Lett, 2013, 103: 053513.
[7] ROY T, TOSUN M, KANG J S, et al. Field-effect transistors built from all two dimensional material components[J]. ACS Nano, 2014, 8: 6259–6264.
[8] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotech, 2014, 9: 780–793.
[9] HU P, WEN Z, WANG L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6: 5988–5994.
[10] ZHU Z, GUAN J, TOMANEK D. Strain-induced metal- semiconductor transition in monolayers and bilayers of gray arsenic: A computational study[J]. Phys Rev B, 2015, 91: 161404.
[11] LI W, WANG T X, DAI X Q, et al. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field[J]. Physica E, 2017, 88: 6–10.
[12] ZHANG S, YAN Z, LI Y, et al. Atomically thin arsenene and antimonene: Semimetal semiconductor and indirect direct band-gap transitions[J]. Angew Chem, 2015, 127: 3155−3158.
[13] ZHANG S, XIE M, LI F, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities[J]. Angew Chem, 2016, 55: 1666−1669.
[14] KECIK D, DURGUN E, CIRACI S. Optical properties of single-layer and bilayer arsenene phases[J]. Phys Rev B, 2016, 94: 205410.
[15] WANG Y, DING Y. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: Insights from first-principles calculations[J]. J Phys Condens Matter, 2015, 27: 225304. 
[16] ZHANG Z Y, CAO H N, ZHANG Y H, et al. Orientation and strain modulated electronic structures in puckered arsenene nanoribbons[J]. AIP Adv, 2015, 5: 067117.
[17] TANG W, SUN M, REN Q, et al. Halogenated arsenenes as Dirac materials[J]. Appl Surf Sci, 2016, 376: 286–289.
[18] ZHANG Q, SCHWINGENSCHLÖGL U. Emergence of Dirac and quantum spin hall states in ?uorinated monolayer As and AsSb[J]. Phys Rev B, 2016, 93: 045312.
[19] WANG C, XIA Q, NIE Y, et al. Strain engineering band gap, e?ective mass and anisotropic Dirac-like cone in monolayer ar-senene[J]. AIP Adv, 2016, 6: 035204.
[20] XU C, ZHU M, ZHENG H, et al. Stability, electronic structure and magnetic properties of vacancy and nonmetallic atom-doped buckled arsenene: First-principles study[J]. RSC Adv, 2016, 6: 43794–43801.
[21] LI Z, XU W, YU Y, et al. Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping[J]. J Mater Chem C, 2016, 4: 362–370.
[22] PAN D, WANG L, LI Z, et al. Synthesis of graphene quantum dot/metal–organic framework nanocomposites as yellow phosphors for white light-emitting diodes[J]. New J Chem, 2018, 42: 5083–5089.
[23] JIA S, SUN H D, DU J H, et al. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes[J]. Nanoscale, 2016, 8: 10714–10723.
[24] MOURI S, MIYAUCHI Y, MATSUDA K. Tunable photoluminescence of monolayer MoS2 via chemical doping[J]. Nano Lett, 2013, 13: 5944–5948.
[25] CHENG Y C, GUO Z B, MI W B, et al. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems[J]. Phys Rev B, 2013, 87: 100401.
[26] LEE J, HUANG J, SUMPTER B G, et al. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures[J]. 2D Mater, 2017, 4: 021016.
[27] LU N, GUO H, LI L, et al. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field[J]. Nanoscale, 2014, 6: 2879–2886.
[28] LIU Q, LI L, LI Y, et al. Tuning electronic structure of bilayer MoS2 by vertical electric field: A first-principles investigation[J]. J Phys Chem C, 2012, 116: 21556–21562.
[29] PONYES R B, MIWA R H, DA SILVA A J R, et al. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene[J]. Phys Rev B, 2018, 97: 235419.
[30] SHU H, TONG Y, GUO J. Novel electronic and optical properties of ultrathin silicene/arsenene heterostructures and electric field effects[J]. Phys Chem Chem Phys, 2017, 19: 10644–10650.
[31] BLÖCHL P E, Projector augmented-wave method[J]. Phys Rev B, 1994, 50: 17953–17979.
[32] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54: 11169–11186.
[33] GRIMME S, Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27: 1787–1799.
[34] KERBER T, SIERKA M, SAUER J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory[J]. J Comput Chem, 2008, 29: 2088–2097.
[35] ZHANG S, HU Y, HU Z, et al. Hydrogenated arsenenes as planar magnet and Dirac material[J]. Appl Phys Lett, 2015, 107: 022102.
[36] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te)[J]. Phys Rev B, 2012, 85: 033305.
[37] RAMASUBRAMANIAM A, NAVEH D, TOWE E. Tunable band gaps in bilayer transition metal dichalcogenides[J]. Phys Rev B, 2011, 84: 205325. 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com