首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
单层Janus材料GaInSe2的电子结构第一原理计算
作者:徐贤达 孙伟峰 
单位:(哈尔滨理工大学电气与电子工程学院 工程电介质及其应用教育部重点实验室  黑龙江省电介质工程重点实验室 哈尔滨 150080) 
关键词:Janus二维结构 电子结构 第一原理计算 光电子材料 
分类号:TM911
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:按照第一原理赝势平面波方法研究具有稳定间接带隙的单层Janus二维半导体GaInSe2的电子结构,探讨构建Janus结构的单层GaSe和InSe与GaInSe2的结构和电子性质之间的内禀关系。原子结构和声子色散谱的计算结果证明单层GaInSe2与GaSe和InSe有着相似的六边形几何构型,具有动态稳定的Janus结构。电子能带结构表明GaInSe2与其二元类似物GaSe和InSe都是间接带隙半导体,GaSe和InSe之间的应变和功函数决定了单层GaInSe2电子结构的基本特征。当原子层平面方向上的应变小于临界值时,单层GaInSe2可转化为直接带隙半导体。因此,在应变小于临界应变的力学条件下,单层GaInSe2可用作二维或表面光电材料。此外,通过调节层平面方向上的应变,可以有效地控制GaInSe2能带的带边特性和带隙宽度,这对于场效应晶体管的潜在应用具有重要意义。

基金项目:
中国博士后科学基金面上资助二等资助(2013M531058);国家自然科学基金(51607048)。
作者简介:
参考文献:

 [1]TENG C, XIE D, WANG J, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Adv Funct Mater, 2017, 27(20): 1700240.

[2]CHEN K, XUE D, KOMARNENI S. Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode[J]. J Colloid Interf Sci, 2017, 487: 156–161.
[3]BARHOUMI M, LAZAAR K, SAID M. Electronic and vibrational properties of TMDs heterogeneous bilayers, nontwisted bilayers silicene/TMDs heterostructures and photovoltaic heterojunctions of fullerenes with TMDs monolayers[J]. Physica E, 2018, 104: 155–164. 
[4]PALUMMO M, BERNARDI M, GROSSMAN J C. Exciton radiative life times in two-dimensional transition metal dichalcogenides[J]. Nano Lett, 2015, 15(5): 2794–2800.
[5]NIE Y, HONG S, WALLACE R M, et al. Theoretical demonstration of the ionic barristor[J]. Nano Lett, 2016, 16(3): 2090–2095.
[6]YANG B, MOLINA E, KIM J, et al. Effect of distance on photoluminescence quenching and proximity-induced spin–orbit coupling in graphene/WSe2 heterostructures[J]. Nano Lett, 2018,18(6): 3580–3585.
[7]ROSS J S, KLEMENT P, JONES A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions[J]. Nat Nanotechnol, 2014, 9(4): 268–272. 
[8]CHUANG H, CHAMLAGAIN B, KOEHLER M, et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors[J]. Nano Lett, 2016, 16(3): 1896–1902. 
[9]CAHANGIROV S, TOPSAKAL M, AKTÜRK E, et al. Two and one dimensional honeycomb structures of silicon and germanium[J]. Phys Rev Lett, 2009, 102(23): 236804.
[10]ZHANG H, LI Y, HOU J, et al. Dirac state in the FeB2 monolayer with graphene-like boron sheet[J]. Nano Lett, 2016, 16(10): 6124–6129. 
[11]ADAMSKA L, SHARIFZADEH S. Fine-tuning the optoelectronic properties of freestanding borophene by strain[J]. ACS Omega, 2017, 2(11): 8290–8299. 
[12]MD SAAD S K, ALI UMAR A, ALI UMAR M I, et al. Two-dimensional, hierarchical Ag-doped TiO2 nanocatalysts: Effect of the metal oxidation state on the photocatalytic properties[J]. ACS Omega, 2018, 3(3): 2579–2587. 
[13]ZHANG X, HUANG H, ZHANG Y, et al. Phase transition of two-dimensional β-Ga2O3 nanosheets from ultrathin γ-Ga2O3 nanosheets and their photocatalytic hydrogen evolution activities[J]. ACS Omega, 2018, 3(10): 14469–14476. 
[14]GAIKWAD P V. Two-dimensional anisotropic C10 carbon allotrope with mechanically tunable band gap[J]. ACS Omega, 2019, 4(3): 5002–5011.
[15]TRUONG Q.D, KEMPAIAH DEVARAJU M, NAKAYASU Y, et al. Exfoliated MoS2 and MoSe2 nanosheets by a supercritical fluid process for a hybrid Mg–Li-ion battery[J]. ACS Omega, 2017, 2(5): 2360–2367.
[16]ZHAO X, YANG Q, ZHANG H, et al. Modulating electronic and magnetic properties of zigzag MoSe2 nanoribbons with different edge structures[J]. Physica E, 2019, 109: 93–100.
[17]ZHANG H, ZHAO X, GAO Y, et al. Electronic and magnetic properties of MoSe2 armchair nanoribbons controlled by the different edge structures[J]. Superlattices Microst, 2018, 115: 30–39. 
[18]LI W, GUO M, ZHANG G, et al. Gapless MoS2 allotrope possessing both massless dirac and heavy fermions[J]. Phys Rev B, 2014, 89(20): 205402.
[19]WANG N, CAO D, WANG J, et al. Semicon ducting edges and flake-shape evolution of monolayer GaSe: Role of edge reconstructions[J]. Nanoscale, 2018, 10(25): 12133–12140.
[20]BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe[J]. Nat Nanotechnol, 2017, 12(3): 223–227.
[21]FENG W, ZHEN W, CAO W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Adv Mater, 2014, 26(38): 6587–6593.
[22]CHENG Y C, ZHU Z Y, TAHIR M, et al. Spin-orbit–induced spin splitting in polar transition metal dichalcogenide monolayers[J]. EPL, 2013, 102(5): 57001. 
[23]YAO Q F, CAI J, TONG W Y, et al. Manipulation of the large rashba spin splitting in polar two-dimensional transition-metal dichalcogenides[J]. Phys Rev B, 2017, 95(16): 165401. 
[24]LU A Y, ZHU H, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nat Nanotechnol, 2017, 12(8): 744–749.
[25]ZHANG J, JIA S, KHOLMANOV I, et al. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano,2017, 11(8): 8192–8198.
[26]GUO Y, ZHOU S, BAI Y, et al. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers[J]. Appl Phys Lett, 2017, 110(16): 163102.
[27]LAASONEN K, CAR R, LEE C, et al. Implementation of ultrasoft pseudopotentials in Ab initio molecular dynamics[J]. Phys Rev B, 1991, 43(8): 6796–6799. 
[28]KRESSE G. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169–11186.
[29]MOBARAK M. Electrical and thermoelectric power measurements of GaInSe2 single crystals[J]. Phys B, 2009, 404(8): 1259–1263. 
[30]FREDERIC P M, AGNES F V, JOHN M. Anderson’s Rule[M]. Saar brücken: Alphascript Publishing, 2011: 76.
[31]WANG Z, WU S F. Helmholtz equation–least-squares method for reconstructing the acoustic pressure field[J]. J Acoust Soc Am, 1997, 102(4), 2020–2032.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com