[1] 敖红敏, 俞耀伦, 龙志奇, 等. 超细锆基复合氧化物粉体制备方法概述[J]. 稀有金属, 2013, 37(2): 302–311.
AO Hongmin, YU Yaolun, LONG Zhiqi, et al. Chin J Rare Metal (in Chinese), 2013, 37(2): 302–311.
[2] 张帆, 王鑫, 张良, 等. ZrO2陶瓷的微波烧结制备及其性能[J]. 硅酸盐学报, 2019, 47(3): 353–357.
ZHANG Fan, WANG Xin, ZHANG Liang, et al. J Chin Ceram Soc, 2019, 47(3): 353–357.
[3] REDDY C V, BABU B, REDDY I N, et al. Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity[J]. Ceram Int, 2018, 44(6): 6940–6948.
[4] LI W, HUANG H, LI H, et al. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008, 24(15): 8358–8366.
[5] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. J Am Chem Soc, 2009, 131(9): 3152–3153.
[6] DENG R, XIE X, VENDRELL M, et al. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. J Am Chem Soc, 2011, 133(50): 20168–20171.
[7] TIAN Z R, VOIGT J A, LIU J, et al. Complex and oriented ZnO nanostructures[J]. Nat Mater, 2003, 2(12): 821–826.
[8] CHOI H G, JUNG Y H, KIM D K. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. J Am Ceram Soc, 2005, 88(6): 1684–1686.
[9] SHU Z, JIAO X, CHEN D. Synthesis and photocatalytic properties of flower-like zirconia nanostructures[J]. Cryst Eng Comm, 2012, 14(3): 1122–1127.
[10] NAYAK B, MOHANTY S, TAKMEEL M, et al. Borohydride synthesis and stabilization of flake-like tetragonal zirconia nanocrystallites[J]. Mater Lett, 2010, 64(17): 1909–1911.
[11] LIU B, CHEN H M, LIU C, et al. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential[J]. J Am Chem Soc, 2013, 135(27): 9995–9998.
[12] HE H, YAO W, WANG C, et al. Morphology-controlled synthesis of sodium hexa-titanate nanowhiskers by changing evaporation rate of NaCl-KCl molten salts[J]. Ind Eng Chem Res, 2013, 52(43): 15034–15040.
[13] 赵志龙, 薛群虎, 赵亮, 等. 添加不同稳定剂制备的四方氧化锆晶型转变临界尺寸研究[J]. 人工晶体学报, 2017, 46(3): 468–474.
ZHAO Zhilong, XUE Qunhu, ZHAO Liang, et al. J Synth Cryst (in Chinese), 2017, 46(3): 468–474.
[14] GARVIE R C. The occurrence of metastable tetragonal zirconia as a crystallite size effect[J]. J Phys Chem, 1965, 69(4): 1238–1243.
[15] WANG T, JIANG W, LIU J, et al. Simple and novel synthesis of zirconia whiskers from a phosphate flux[J]. Ceram Int, 2018, 45(4): 4514–4519.
[16] CHEN Y, JOHNSON E, PENG X. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening[J]. J Am Chem Soc, 2007, 129(35): 10937–10947.
[17] PISKORZ W, GRYBOS J, ZASADA F, et al. Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO2 nanocrystals[J]. J Phys Chem C, 2011, 115(49): 24274–24286.
[18] CHRISTENSEN A, CARTER E A. First-principles study of the surfaces of zirconia[J]. Phys Rev B, 1998, 58(12): 8050–8064.
|