首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
熔融盐对氧化锆纳米片合成的影响
作者:刘雪枫1 刘健敏2 李亚格1 唐紫娟1  涛1  果2 江伟辉1 2 
单位:(1. 景德镇陶瓷大学材料科学与工程学院 江西 景德镇 333403  2. 国家日用及建筑陶瓷工程技术研究中心 江西 景德镇 333001) 
关键词:熔盐法 氧化锆纳米片 (001)晶面 自聚焦 
分类号:TB383
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:以四氯化锆为锆源,乙醇为溶剂,采用溶剂热辅助熔盐法低温煅烧制备氧化锆纳米片。研究并讨论了熔盐种类和用量对氧化锆晶体生长和形貌的影响。结果表明:以NaCl和Na3PO4的混合物为熔盐,且m(前驱体):m(NaCl):m(Na3PO4) =10:10:1时,可以得到平均边长超过1.8 μm,厚约70 nm,宽厚比大于10:1的单斜氧化锆纳米片。纳米片为单晶结构,无明显缺陷,主要暴露面为(001)晶面,其在熔盐中的形成符合自聚焦机理,包括溶解、扩散、吸附和生长过程,(001)面主导的氧化锆纳米片与表面能的理论计算结果吻合。

基金项目:
国家自然科学基金(51662016,51962014);江西省重点研发计划(20192BBEL50022);江西省教育厅重点项目(GJJ180699)。
作者简介:
参考文献:

 [1] 敖红敏, 俞耀伦, 龙志奇, 等. 超细锆基复合氧化物粉体制备方法概述[J]. 稀有金属, 2013, 37(2): 302–311.

AO Hongmin, YU Yaolun, LONG Zhiqi, et al. Chin J Rare Metal (in Chinese), 2013, 37(2): 302–311.
[2] 张帆, 王鑫, 张良, 等. ZrO2陶瓷的微波烧结制备及其性能[J]. 硅酸盐学报, 2019, 47(3): 353–357.
ZHANG Fan, WANG Xin, ZHANG Liang, et al. J Chin Ceram Soc, 2019, 47(3): 353–357.
[3] REDDY C V, BABU B, REDDY I N, et al. Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity[J]. Ceram Int, 2018, 44(6): 6940–6948.
[4] LI W, HUANG H, LI H, et al. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008, 24(15): 8358–8366.
[5] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. J Am Chem Soc, 2009, 131(9): 3152–3153.
[6] DENG R, XIE X, VENDRELL M, et al. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J]. J Am Chem Soc, 2011, 133(50): 20168–20171.
[7] TIAN Z R, VOIGT J A, LIU J, et al. Complex and oriented ZnO nanostructures[J]. Nat Mater, 2003, 2(12): 821–826.
[8] CHOI H G, JUNG Y H, KIM D K. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. J Am Ceram Soc, 2005, 88(6): 1684–1686.
[9] SHU Z, JIAO X, CHEN D. Synthesis and photocatalytic properties of flower-like zirconia nanostructures[J]. Cryst Eng Comm, 2012, 14(3): 1122–1127. 
[10] NAYAK B, MOHANTY S, TAKMEEL M, et al. Borohydride synthesis and stabilization of flake-like tetragonal zirconia nanocrystallites[J]. Mater Lett, 2010, 64(17): 1909–1911. 
[11] LIU B, CHEN H M, LIU C, et al. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential[J]. J Am Chem Soc, 2013, 135(27): 9995–9998.
[12] HE H, YAO W, WANG C, et al. Morphology-controlled synthesis of sodium hexa-titanate nanowhiskers by changing evaporation rate of NaCl-KCl molten salts[J]. Ind Eng Chem Res, 2013, 52(43): 15034–15040.
[13] 赵志龙, 薛群虎, 赵亮, 等. 添加不同稳定剂制备的四方氧化锆晶型转变临界尺寸研究[J]. 人工晶体学报, 2017, 46(3): 468–474. 
ZHAO Zhilong, XUE Qunhu, ZHAO Liang, et al. J Synth Cryst (in Chinese), 2017, 46(3): 468–474.
[14] GARVIE R C. The occurrence of metastable tetragonal zirconia as a crystallite size effect[J]. J Phys Chem, 1965, 69(4): 1238–1243.
[15] WANG T, JIANG W, LIU J, et al. Simple and novel synthesis of zirconia whiskers from a phosphate flux[J]. Ceram Int, 2018, 45(4): 4514–4519.
[16] CHEN Y, JOHNSON E, PENG X. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening[J]. J Am Chem Soc, 2007, 129(35): 10937–10947.
[17] PISKORZ W, GRYBOS J, ZASADA F, et al. Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO2 nanocrystals[J]. J Phys Chem C, 2011, 115(49): 24274–24286.
[18] CHRISTENSEN A, CARTER E A. First-principles study of the surfaces of zirconia[J]. Phys Rev B, 1998, 58(12): 8050–8064.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com