首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非接触电阻率法在水泥基材料上的应用进展
作者:王赟程2 刘志勇1 2 张云升1  诚1 
单位:(1. 东南大学 江苏省土木工程材料重点实验室 南京 211189  2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室 江苏 徐州 221116) 
关键词:水泥 电阻率 水化 微结构 渗透 
分类号:TU525
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:非接触电阻率法是一种新型无损检测方法,能够原位连续监测样品电阻率的变化。简要概括了非接触电阻率法在水泥基材料的早期水化进程研究中的应用,详细总结了其在表征微结构表征和渗透性能上的应用。介绍了3种改进后的非接触电阻率法和基于新方法的微结构参数和扩散系数计算理论模型。指出了现有研究的不足,并提出了对非接触电阻率法在实验装置改进、微结构和渗透性能表征以及理论模型研究方面的展望。

基金项目:
国家自然科学基金面上项目(51778613)。
作者简介:
参考文献:

 [1] HE P, SHI C, TU Z, et al. Effect of further water curing on compressive strength and microstructure of CO2-cured concrete[J]. Cem Concr Compos, 2016, 72: 80–88. 

[2] PALIN D, THIJSSEN A, WIKTOR V, et al. ESEM-BSE coupled with rapid nano-scratching for micro-physicochemical analysis of marine exposed concrete[C]//Proceedings of the 15th Euroseminar on Microscopy Applied to Building Materials. Delft, The Netherlands, 2015:110–112. 
[3] AQUINO R G, KOLEVA D A, VAN BREUGEL K, et al. Characterization of Portland cement paste using MIP, nanoindentation and esem techniques[C]//1st International Conference on Concrete Sustainability. Tokyo, Japan: Japan Concrete Institute, 2013: 1088–1093.
[4] MOSER R D, ALLISON P G, CHANDLER M Q. Characterization of impact damage in ultra-high performance concrete using spatially correlated nanoindentation/SEM/EDX[J]. J Mater Eng Perform, 2013, 22(12): 3902–3908. 
[5] SHEN W, YI L, CAO L, et al. Mixing design and microstructure of ultra high strength concrete with manufactured sand[J]. Constr Build Mater, 2017, 143: 312–321. 
[6] JEHNG J Y, SPRAGUE D T, HALPERIN W P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J]. Magn Reson Imaging, 1996, 14(7/8): 785–791. 
[7] LIAO Y, WEI X, LI G. Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations[J]. Constr Build Mater, 2011, 25(4): 1572–1579. 
[8] CALLEJA J. New techniques in the study of setting and hardening of hydraulic materials[J]. Am Concr Inst, 1952: 525–536. 
[9] CALLEJA J. Determination of setting and hardening time of high-alumina cements by electrical resistance techniques[J]. ACI Struct J, 1953: 249–256. 
[10] TAMÁS F D. Electrical conductivity of cement pastes[J]. Cem Concr Res, 1982, 12(1): 115–120. 
[11] El WAHED M A, HELMY I, EL DIDAMONY H, et al. Effect of admixtures on the electrical behaviour of Portland cement[J]. J Mater Sci Lett, 1993, 12(1): 40–42. 
[12] TORRENTS J M, RONCERO J, GETTU R. Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement[J]. Cem Concr Res, 1998, 28(9): 1325–1333. 
[13] PAYA J, BORRACHERO M, MONZO J, et al. Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity[J]. Cem Concr Res, 2001, 31(1): 41–49. 
[14] WHITTINGTON H, MCCARTER J, FORDE M. The conduction of electricity through concrete[J]. Mag Concr Res, 1981, 33(114): 48–60. 
[15] PING X, BEAUDOIN J J, BROUSSEAU R. Flat aggregate-portland cement paste interfaces, I. Electrical conductivity models[J]. Cem Concr Res, 1991, 21(4): 515–522. 
[16] PING X, BEAUDOIN J J, BROUSSEAU R. Effect of aggregate size on transition zone properties at the portland cement paste interface[J]. Cem Concr Res, 1991, 21(6): 999–1005. 
[17] YANG S, XU Z, PING X, et al. A new method of enhancing cement-aggregate interfaces, I. Ideal aggregate and its effects on interfacial microstructures[J]. Cem Concr Res, 1992, 22(4): 612–620. 
[18] 肖莲珍, 李宗津, 魏小胜. 用电阻率法研究新拌混凝土的早期凝结和硬化[J]. 硅酸盐学报, 2005, 33(10): 1271–1275. 
XIAO Lianzhen, LI Zongjin, WEI Xiaosheng. J Chin Ceram Soc, 2005, 33(10): 1271–1275. 
[19] LI Z, LI W C. Transformer-based measurement of the resistivity of materials[P]. US Patent, 6639401. 2003–10–28. 
[20] WEISS J, SNYDER K, BULLARD J, et al. Using a saturation function to interpret the electrical properties of partially saturated concrete[J]. J Mater Civ Eng, 2012, 25(8): 1097–1106.
[21] 张云升, 张文华, 李宗津, 等. 高温环境混凝土形成过程中电阻率变化的测量装置与方法[P]. CN Patent, 202066823. 2011–10–26. 
ZHANG Yunsheng, ZHANG Wenhua, LI Zongjin, et al. Measuring device and method of electrical resistance change in high temperature environment concrete formation process (in Chinese). CN Patent, 202066823. 2011–10–26. 
[22] HE R, MA H, HAFIZ R B, et al. Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory[J]. Mater Des, 2018, 156: 82–92.
[23] HE R, YE H, MA H, et al. Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement[J]. J Mater Civ Eng, 2019, 31(3): 04019006.
[24] Wei X. Interpretation of hydration process of cement-based materials using resistivity measurement (in Chinese, dissertation). Hong Kong: Hong Kong University of Science and Technology, 2004.
[25] YAMAGUCHI T, MATSUOKA T, KODA S. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions[J]. J Chem Phys, 2009, 130(9): 234501. 
[26] KOU J, YAO J, LU H, et al. Electromanipulating water flow in nanochannels[J]. Angew Chem, 2015, 54(8): 2351–2355. 
[27] TANG S, CAI X, HE Z, et al. The review of early hydration of cement-based materials by electrical methods[J]. Constr Build Mater, 2017, 146: 15–29. 
[28] LI Z, SHENGWEN T, YOUYUAN L. Pore structure analyzer based on non-contact impedance measurement for cement-based materials[P]. US Patent, 9488635. 2016–11–08. 
[29] 梅塔 P 库马尔, 蒙蒂罗 保罗 J M. 混凝土微观结构、性能和材  料[M]. 北京: 中国建筑工业出版社, 2016: 166.
[30] LI Z, WEI X, LI W. Preliminary interpretation of hydration process of Portland cement using resistivity measurement[J]. ACI Mater J, 2003, 100(3): 253–257. 
[31] LI Z, WEI X. The electrical resistivity of cement paste incorporated with retarder[J]. J Wuhan Univ Technol: Mater Sci Ed, 2003, 18(3): 76–78. 
[32] WEI X, LI Z. Early hydration process of Portland cement paste by electrical measurement[J]. J Mater Civ Eng, 2006, 18(1): 99–105. 
[33] WEI X, LI Z. Study on hydration of Portland cement with fly ash using electrical measurement[J]. Mater Struct, 2005, 38(3): 411–417. 
[34] 刘志勇, 张云升, 姜骞, 等. 原位监测水泥基材料早期电阻率的变化过程[J]. 东南大学学报(自然科学版), 2012, 42(2): 378–382. 
LIU Zhiyong, ZHANG Yunsheng, JIANG Qian, et al. J Southeast Univ: Nat Sci Ed (in Chinese), 2012, 42(2): 378–382 
[35] 刘志勇, 张云升, 孙国文, 等. 电阻率法研究早期水泥净浆孔结构的演变过程[J]. 土木建筑与环境工程, 2012, 34(5): 148–153. 
LIU Zhiyong, ZHANG Yunsheng, SUN Guowen, et al. J Civ Arechitect Environ Eng (in Chinese), 2012, 34(5): 148–153. 
[36] 隋同波, 曾晓辉, 谢友均, 等. 电阻率法研究水泥早期行为[J]. 硅酸盐学报, 2008, 36(4): 11–15. 
SUI Tongbo, ZENG Xiaohui, XIE Youjun, et al. J Chin Ceram Soc, 2008, 36(4): 11–15. 
[37] 洪天从. 基于电阻率法的混凝土水化进程和渗透性能演变规律研究[D]. 杭州: 浙江大学, 2012. 
HONG Tiancong. Study on hydration process and permeability evolution of concrete by electrical resistivity (in Chinese, dissertation). Hangzhou: Zhejiang University, 2012. 
[38] 陈军. 早龄期混凝土水化进程及宏观与细微观性能相关性研究[D]. 杭州: 浙江大学, 2014. 
CHEN Jun. Hydration process and correlation of marco- and meso-/micro- properties of early-age concrete (in Chinese, dissertation). Hangzhou: Zhejiang University, 2014. 
[39] 付传清, 陈军, 金贤玉, 等. 早龄期混凝土的电阻率特性和微观形貌研究[J]. 混凝土, 2015(4): 32–36. 
FU Chuanqing, CHEN Jun, JIN Xianyu, et al. Concrete (in Chinese), 2015(4): 32–36. 
[40] XIAO L, LI Z. New understanding of cement hydration mechanism through electrical resistivity measurement and microstructure investigations[J]. J Mater Civ Eng, 2009, 21(8): 368–373. 
[41] XIAO L, WEI X. Study on the hydration parameters in hardening paste, mortar and concrete based on electrical resistivity measurement[J]. Mater Struct, 2017, 50(1): 22–33. 
[42] DONG R, MA B, WEI J, et al. Model analysis of initial hydration and structure forming of Portland cement[J]. J Wuhan Univ Technol: Mater Sci Ed, 2007, 22(4): 757–759. 
[43] 廖宜顺, 李国卫, 魏小胜. 电阻率法研究快硬硫铝酸盐水泥的水化过程[J]. 武汉理工大学学报, 2009, 31(17): 74–77. 
LIAO Yishun, LI Guowei, WEI Xiaosheng. Study on the hydration process of quick-hardening sulphoaluminate cement by resistivity method[J]. J Wuhan Univ Technol (in Chinese), 2009, 31(17): 74–77. 
[44] 张纪阳, 关博文, 马慧, 等. 用电阻率法研究氯氧镁水泥凝结时  间[J]. 混凝土, 2016(11): 21–23. 
ZHANG Jiyang, GUAN Bowen, MA Hui, et al. Concrete (in Chinese), 2016(11): 21–23. 
[45] 关博文, 王永维, 刘状壮, 等. 用电阻率法研究氯氧镁水泥早期水化行为[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(3): 453–457. 
GUAN Bowen, WANG Yongwei, LIU Zhuangzhuang, et al. J Xi’an Univ Archit Technol: Nat Sci Ed (in Chinese), 2015, 47(3): 453–457. 
[46] 张云升, 贾艳涛, 李宗津, 等. 电阻率法研究粉煤灰基地聚合物的凝结硬化[J]. 武汉理工大学学报, 2009(7): 111–114. 
ZHANG Yunsheng, JIA Yantao, LI Zongjin, et al. J Wuhan Univ Technol (in Chinese), 2009(7): 111–114. 
[47] AKRAM K J, ISLAM T, AHMED A. A simple method on transformer principle for early age hydration monitoring and setting time determination of concrete materials[J]. IEEE Sens J, 2018, 18(17): 7265–7272.
[48] LIAO Y, WEI X. Penetration resistance and electrical resistivity of cement paste with superplasticizer[J]. Mater Struct, 2014, 47(4): 563–570. 
[49] 魏小胜. 用电阻率表征水泥混凝土结构形成动力学及性能[M]. 武汉: 武汉理工大学出版社, 2016: 20–91. 
[50] SANISH K B, NEITHALATH N, SANTHANAM M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements[J]. Constr Build Mater, 2013, 49(6): 288–297. 
[51] WEI X, XIAO L, LI Z. Electrical measurement to assess hydration process and the porosity formation[J]. J Wuhan Unive Technol: Mater Sci Ed, 2008, 23(5): 761–766. 
[52] ARCHIE G E. The Electrical resistivity log as an aid in determining some reservoir characteristics[J]. Trans AIME, 1942, 146(1): 54–62.
[53] XIAO L, LI Z. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement[J]. Cem Concr Res, 2008, 38(3): 312–319. 
[54] SHAO H, ZHANG J, FAN T, et al. Electrical method to evaluate elastic modulus of early age concrete[J]. Constr Build Mater, 2015, 101: 661–666. 
[55] GARBOCZI E J. Permeability, diffusivity, and microstructural parameters: A critical review[J]. Cem Concr Res, 1990, 20(4): 591–601. 
[56] ZHANG J. Microstructure study of cementitious materials using resistivity measurement (in Chinese, dissertation). Hong Kong: Hong Kong University of Science and Technology, 2008.
[57] MCLACHLAN D S. A quantitative analysis of the volume fraction dependence of the resistivity of cermets using a general effective media equation[J]. J Appl Phys, 1990, 68(1): 195–199. 
[58] BENTZ D P, GARBOCZI E J. Modelling the leaching of calcium hydroxide from cement paste: Effects on pore space percolation and diffusivity[J]. Mater Struct, 1992, 25(9): 523–533. 
[59] BENTZ D P, GARBOCZI E J. Percolation of phases in a three-dimensional cement paste microstructural model[J]. Cem Concr Res, 1991, 21(2/3): 325–344. 
[60] 刘志勇. 基于环境的海工混凝土耐久性试验与寿命预测方法研  究[D]. 南京: 东南大学, 2006. 
LIU Zhiyong. Research on durability test and life prediction method of marine concrete based on environment (in Chinese, dissertation). Nanjing: Southeast University, 2006. 
[61] LI Z, XIAO L Z, WEI X, et al. Interpretation of microstructure development of cementitious materials in early ages with electrical resistivity measurement[C]//1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 2008: 253–262. 
[62] LIU Z, ZHANG Y, JIANG Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes[J]. Constr Build Mater, 2014, 53(53): 26–31. 
[63] NAKARAI K, ISHIDA T, MAEKAWA K. Modeling of calcium leaching from cement hydrates couples with micro-pore solution formation[J]. J Adv Concr Technol, 2006, 4(3): 395–407. 
[64] CHEN J, LI Z, JIN X. Critical features of microstructure development of early-age cement paste revealed by non-contact electrical resistivity measurement[J]. Constr Build Mater, 2017, 154: 1121–1129. 
[65] KOVÁCIK J. Electrical conductivity of two-phase composite material[J]. Scr Mater, 1998, 39(2): 153–157. 
[66] 陈军, 金南国, 金贤玉, 等. 基于电阻率法研究混凝土渗透性能演变规律[J]. 浙江大学学报(工学版), 2013, 47(4): 575–580. 
CHEN Jun, JIN Nanguo, JIN Xianyu, et al. J Zhejiang Univ: Eng Sci (in Chinese) , 2013, 47(4): 575–580. 
[67] XIAO L, REN Z, SHI W, et al. Experimental study on chloride permeability in concrete by non-contact electrical resistivity measurement and RCM[J]. Constr Build Mater, 2016, 123: 27–34. 
[68] 魏小胜, 夏玉英, 王延伟. 用电阻率法评定混凝土的氯离子渗透[J]. 华中科技大学学报: 城市科学版, 2008, 25(2): 19–22. 
WEI Xiaosheng, XIA Yuying, WANG Yanwei. J Huazhong Univ Sci Technol: Urban Sci Ed (in Chinese), 2008, 25(2): 19–22. 
[69] LIU Z, ZHANG Y, JIANG Q, et al. Solid phases percolation and capillary pores depercolation in hydrating cement pastes[J]. J Mater Civ Eng, 2013, 26(12): 04014090. 
[70] SANT G, BENTZ D, WEISS J. Capillary porosity depercolation in cement-based materials: Measurement techniques and factors which influence their interpretation[J]. Cem Concr Res, 2011, 41(8): 854–864. 
[71] TANG S W, LI Z J, CHEN E, et al. Impedance measurement to characterize the pore structure in Portland cement paste[J]. Constr Build Mater, 2014, 51(51): 106–112. 
[72] ITAGAKI M, HATADA Y, SHITANDA I, et al. Complex impedance spectra of porous electrode with fractal structure[J]. Electrochim Acta, 2010, 55(21): 6255–6262. 
[73] TANG S, LI Z, ZHU H, et al. Permeability interpretation for young cement paste based on impedance measurement[J]. Constr Build Mater, 2014, 59: 120–128. 
[74] YU B, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. Int J Heat Mass Transfer, 2002, 45(14): 2983–2993. 
[75] YU B. Analysis of flow in fractal porous media[J]. Appl Mech Rev, 2008, 61(5): 050801. 
[76] TANG S, LI Z J, CHEN E, et al. Non-steady state migration of chloride ions in cement pastes at early age[J]. RSC Adv, 2014, 4(89): 48582–48589. 
[77] TANG L. Concentration dependence of diffusion and migration of chloride ions: Part 1. Theoretical considerations[J]. Cem Concr Res, 1999, 29(9): 1463–1468. 
[78] TANG L. Concentration dependence of diffusion and migration of chloride ions: Part 2. Experimental evaluations[J]. Cem Concr Res, 1999, 29(9): 1469–1474.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com