首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
沥青炭填充提高SnO2/还原氧化石墨烯负极材料Coulomb效率及储钠性能
作者: 伟1 2  冰2  丁1 杨绍斌1 富世博1 王文博1 
单位:(1. 辽宁工程技术大学材料科学与工程学院 辽宁 阜新 123000  2. 辽宁工程技术大学力学与工程学院 辽宁 阜新 123000) 
关键词:钠离子电池 石墨烯 二氧化锡 负极材料 
分类号:O646
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:SnO2的储钠理论容量高,是很有前景的储钠材料,石墨烯导电性和力学性能良好,是理想的电极材料辅助材料。然而与石墨烯复合后获得的SnO2/还原氧化石墨烯(RGO)复合材料比表面积大,首次Coulomb效率低,影响了材料的规模应用。采用水热法,原位合成了SnO2/RGO复合材料,并成功填充沥青炭制备了C/SnO2/RGO复合材料。结果表明:C/SnO2/RGO复合材料中SnO2均匀分布在RGO结构中,晶粒尺寸约6 nm;沥青炭填充后的C/SnO2/RGO首次Coulomb效率显著提高,比SnO2/RGO提高近25%;100次循环以后SnO2/RGO和C/SnO2/RGO复合材料容量保持分别为442.1和479.8 mA·h/g;沥青炭的加入使得循环稳定性显著增加,材料的阻抗得到了大幅度改善,增加了SnO2粒子、RGO以及沥青炭之间的电子以及离子传导性。

基金项目:
国家自然基金(51874167,21808095)。
作者简介:
参考文献:

 [1] LV F, WANG Z, SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J Power Sources, 2019, 441: 227175.

[2] KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries[J]. J Power Sources, 2019, 422: 18–24.
[3] 杨绍斌, 董伟, 沈丁, 等. 钠离子电池正极材料的研究进展[J]. 功能材料, 2015, 46(13): 13001–13006.
YNAG Shaobing, DONG Wei, SHEN Ding, et al. Funct Mater (in Chinese), 2015, 46(13): 13001–13006.
[4] MOYER K, MENG C, MARSHALL B, et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats[J]. Energy Storage Mater, 2020, 24: 676–681.
[5] FAN X, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nat Energy, 2019, 4(10): 882–890.
[6] CHOUDHURY S, STALIN S, VU D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nat commun, 2019, 10(1): 1–8.
[7] 杨绍斌, 董伟, 沈丁, 等. 钠离子电池负极材料的研究进展[J]. 中国有色金属学报, 2016, 26(5): 1054–1064.
YANG Shaobin, DONG Wei, SHEN Ding, et al. T Nonferr Metal Soc (in Chinese), 2016, 26(5): 1054–1064.
[8] 王勇, 刘雯, 郭瑞, 等. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(10): 1–15.
WANG Yong, LIU Wen, GUO Rui, et al. Chem Ind Eng Prog (in Chinese), 2018, 37(10): 1–15.
[9] 张英杰, 朱子翼, 董鹏, 等. 钠离子电池碳基负极材料的研究进  展[J]. 化工进展, 2017, 36(11): 4106–4115.
ZHNAG Yingjie, ZHU Ziyi, DONG Peng, et al. Chem Ind Eng Prog (in Chinese), 2017, 36(11): 4106–4115.
[10] PALOMARES V, CASAS-CABANAS M, CASTILLO-MARTÍNEZ E, et al. Update on Na-based battery materials. A growing research path[J]. Energy Environ Sci, 2013, 6(8): 2312–2337.
[11] STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. J Electrochem Soc, 2001, 148(8): A803–A811.
[12] CHEVRIER V L, CEDER G. Challenges for Na-ion negative electrodes[J]. J Electrochem Soc, 2011, 158(9): A1011–A1014.
[13] 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3): 227–233.
DONG Wei, YANG Shaobin, SHEN Ding, et al. New Carbon Mater (in Chinese), 2017, 32(3): 227–233.
[14] HAN H, LU H, JIANG X, et al. Polyaniline hollow nanofibers prepared by controllable sacrifice-template route as high-performance cathode materials for sodium-ion batteries[J]. Electrochim Acta, 2019, 301: 352–358.
[15] LI F, XIE L, SUN G, et al. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices[J]. Micropor Mesopor Mater, 2019, 279(1): 293–315.
[16] LI X, SUN X, GAO Z, et al. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries[J]. Appl Surf Sci, 2018, 433: 713–722.
[17] DURSUN B, TOPAC E, ALIBEYLI R, et al. Fast microwave synthesis of SnO2@ graphene/N-doped carbons as anode materials in sodium ion batteries[J]. J Alloy Compd, 2017, 728: 1305–1314.
[18] CHEN H, ZHANG H, WU Y, et al. Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents[J]. J Electroanal Chem, 2018, 827: 112–119.
[19] WEI X, GUAN Y, ZHENG X, et al. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Appl Surf Sci, 2018, 440: 748–754.
[20] MENG J K, WANG W W, WANG Q C, et al. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium-ion batteries[J]. Electrochim Acta, 2019, 303: 32–39.
[21] FAN L, SONG X, XIONG D, et al. Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode[J]. J Electroanal Chem, 2019, 833: 340–348.
[22] MA C, JIANG J, XU T, et al. Freeze-drying-assisted synthesis of porous SnO2/rGO xerogels as anode materials for highly reversible lithium/sodium storage[J]. Chem Electro Chem, 2018, 5(17): 2387–2394.
[23] YANG S, DONG W, SHEN D, et al. Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency[J]. Chem Eng J, 2017, 309: 674–681.
[24] YANG S, DONG W, SHEN D, et al. Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency[J]. Chem Eng J, 2016, 309: 674–681.
[25] WANG Y, LIM Y, PARK M, et al. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances[J]. J Mater Chem A, 2013, 2(2): 529–534. 
[26] LYTLE J C, YAN H, ERGANG N S, et al. Structural and electrochemical properties of three-dimensionally ordered macroporous tin (IV) oxide films[J]. J Mater Chem, 2004, 14(10): 1616–1622.
[27] 董伟, 杨绍斌, 梁冰, 等. 热还原氧化石墨的可逆储钠性能[J]. 硅酸盐学报, 2018, 46(5): 619–624.
DONG Wei, YANG Shaobin, LIANG Bing, et al. J Chin Ceram Soc, 2018, 46(5): 619–624.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com