首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米银复合的多孔生物质硅材料的制备及储锂性能
作者:    梁晓杜 李幼聪     廖丽霞 
单位:(东北林业大学化学化工与资源利用学院 哈尔滨 150040) 
关键词:生物质 锂离子电池 谷壳 镁热还原?银镜反应法 
分类号:TB332
出版年,卷(期):页码:2020,48(4):0-0
DOI:
摘要:

 摘  要:以废弃的谷壳为原料,通过镁热还原−银镜反应法成功制备了多孔硅/银复合纳米材料,并研究其结构形貌及储锂性能。结果表明:采用谷壳为原料获得的硅/银复合材料为纳米多孔结构,其粒径约为10~20 nm,纳米银的原位复合可显著提高电极的循环稳定性能、倍率性能和比容量。原位纳米银粒子复合后的Si/Ag电极50次循环后的容量依然能维持        750.4 mA·h/g,为石墨类碳材料容量的2倍以上,较生物质硅电极提高了370.2 mA·h/g,采用800 mA/g的电流密度进行大电流充放电时,Si/Ag电极表现出618.3 mA·h/g的可逆容量,远高于Si电极380.2 mA·h/g的容量。性能的改善缘于复合后本体材料较高的导电性和电极/电解液界面的优良性能。

基金项目:
国家自然科学基金(51602046);中央高校基本科研业务费项目(2572018BC30);黑龙江省博士后面上项目(LBH-Z14003,LBH-Z14014);大学生创新项目(201810225469)。
作者简介:
参考文献:

 [1] LIN L D, XU X N, CHU C X, et al. Mesoporous amorphous silicon: A simple synthesis of a high-rate and long-life anode material for lithium-ion batteries[J]. Angew Chem Int Edit, 2016, 55(45): 14063–14066. 

[2] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett, 2012, 12(6): 3315–3321. 
[3] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357: 279–283.
[4] 肖思, 谢旭佳, 谢雍基, 等. 锂离子电池硅/石墨烯负极材料的电化学性能[J]. 硅酸盐学报, 2019, 47(9): 1–8.
XIAO Si, XIE Xujia, XIE Yongji, et al. J Chin Ceram Soc, 2019, 47(9): 1–8.
[5] MU T S, ZUO P J, LOU S F, et al. A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high- performance anode material for lithium ion batteries[J]. J Alloy Compd, 2019, 777: 190–197.
[6] YU Y, GU L, ZHU C B, et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon[J]. Adv Mater, 2010, 22(20): 2247–2250. 
[7] YIN S S, JI Q, ZUO X X, et al. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles[J]. J Mater Sci Technol, 2018, 34(10): 1902–1911.
[8] CHEN H X, XIAO Y, WANG L, et al. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries[J]. J Power Sources, 2011, 196(16): 6657–6662. 
[9] MAGASINSKI A, DIXON P, HERTZBERG B. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nat Mater, 2010, 9(4): 353–358.
[10] ZHU X Y, CHEN H, WANG Y, et al. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries[J]. J Mater Chem A, 2013, 1(14): 4483–4489. 
[11] KIM J S, PFLEGING W, KOHLER R, et al. Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries[J]. J Power Sources, 2015, 279: 13–20.
[12] LUO X, ZHANG H J, PAN W, et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery[J]. Small, 2015, 11(45): 6009–6012.
[13] FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147–163. 
[14] SANKAR S, SARAVANAN S, AHMED A T A, et al. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery[J]. Mater Lett, 2019, 240: 189–192. 
[15] TIAN W F, WANG L, HUO K, et al. Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries[J]. J Power Sources, 2019, 430: 60–66. 
[16] BUTT M T Z, PREUSS K, TITIRICI M M, et al. Biomass-derived nitrogen-doped carbon aerogel counter electrodes for dye sensitized solar cells[J]. Materials, 2018, 11(7): 1171–1181. 
[17] ZHANG G X, CHEN Y M, CHEN Y G, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Mater Res Bull, 2018, 102: 391–398.
[18] SHANG T X, REN R Q, ZHU Y, et al. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance[J]. Electrochim Acta, 2015, 163: 32–40. 
[19] HUANG X K, SUI X Y, YANG H, et al. HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries[J]. J. Mater Chem A, 2018, 6: 2593–2599.
[20] 王洁, 张健, 于样, 等. 碳化芦苇叶直接制备高性能Si/C锂离子电池负极试验[J]. 林业工程学报, 2019, 4(5): 84–91.
WANG Jie, ZHANG Jian, YU Yang, et al. J For Eng (in Chinese), 2019, 4(5): 84–91.
[21] 崔涛, 王要武, 尚玉明, 等. 锂离子电池Si/Ag复合材料的制备及性能研究[C]//第30届全国化学与物理电源学术年会, 上海, 2003: 264–266.
CUI Tao, WANG Yaowu, SHANG Yuming, et al. Preparation of Si/Ag composite as anode materials for lithium ion batteries[C]//30th China Chemical and Physical Power Academic Conference, Shanghai, China, 2003: 264–266.
[22] 张瑞, 姜训勇. 金属硅的储锂性能[J]. 硅酸盐学报, 2013, 41(2): 159–164. 
ZHANG Rui, JIANG Xunyong. J Chin Ceram Soc, 2013, 41(2): 159–164.
[23] 杨学林, 温兆银, 张露露, 等. 基于银镜反应的硅/银复合负极材料的制备及其表征[J]. 无机化学学报, 2007, 23(12): 2054–2058.
YANG Xuelin, WEN Zhaoying, ZHANG Lulu, et al. Chin J Inorg Chem (in Chinese), 2007, 23(12): 2054–2058.
[24] KIM C, JUNG J W, YOON K R, et al. A high-capacity and long-cycle-life lithium-ion battery anode architecture: Silver nanoparticle- decorated SnO2/NiO nanotubes[J]. ACS Nano, 2016, 10: 11317–11326.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com