首页期刊信息编委及顾问期刊发行联系方式使用帮助留言板ENGLISH
位置:首页 >> 正文
电化学沉积生物功能涂层的研究进展
作者:翁文剑 庄均珺 林素雅 董灵庆   
单位:浙江大学材料科学与工程学院 杭州 310027 
关键词:电化学沉积 生物功能 涂层 骨整合 骨植入体 
分类号:TB32
出版年,卷(期):页码:2017,45(11):0-0
DOI:10.14062/j.issn.0454-5648.2017.11.01
摘要:
医用金属材料作为骨科常用的修复材料,具有良好的生物相容性和力学性能,但缺乏骨整合能力。表面修饰生物功
能涂层可极大地提升其生物学性能。电化学沉积作为一种工艺简单、过程温和的涂层制备方式在生物涂层制备中得到越来越
广泛的关注和应用。本文根据骨整合阶段植入体表面所需具备的生物功能,例如生物活性、组织诱导性、抗菌性等,系统地
综述了国内外利用电化学沉积制备生物功能涂层的研究状况,介绍了电化学沉积生物功能涂层的机理及优势,展望了电化学
沉积技术在生物功能涂层制备方面的发展前景。
 
Metallic implant, as a common repair material for orthopedics, has good biocompatibility and mechanical strength, but is
unable to bring about osteogenesis. The implant surface will be greatly activated by modification with biologically functionalized
coatings, and consequently come out with the desired osteointegration. Electrochemical deposition, as a simple, mild approach for
coating preparation, has been utilized in bio-coatings. This paper reviewed recent development of biologically functionalized coatings
prepared by electrochemical deposition, and introduced the mechanisms and the existing problems of the coatings. Also, the clinical
application of electrochemical deposition aided biologically functionalized coatings was prospected.
基金项目:
国家自然科学基金(51472216)
作者简介:
翁文剑(1959—),男,博士,教授
参考文献:

[1] NIINOMI M. Recent metallic materials for biomedical applications[J]. Metallurg Mater Trans A, 2002, 33(3): 477–486.

[2] 刘宣勇. 生物医用钛材料及其表面改性[M]. 化学工业出版社, 2009.

[3] NIINOMI M, NAKAI M, HIEDA J. Development of new metallic alloys for biomedical applications[J]. Act Biomater, 2012, 8(11): 3888–903.

[4] HAN C M, LEE E J, KIM H E, et al. Porous TiO2 films on Ti implants for controlled release of tetracycline-hydrochloride (TCH)[J]. Thin Solid Films, 2011, 519(22): 8074–8076.

[5] DAVIES J E. Understanding peri-implant endosseous healing[J]. J Dental Educat, 2003, 67(8): 932–949.

[6] BALASUNDARAM G, WEBSTER T J. Increased osteoblast adhesion on nanograined Ti modified with KRSR[J]. J Biomed Mater Res Part A, 2007, 80(3): 602–611.

[7] GULATI K, RAMAKRISHNAN S, AW M S, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion[J]. Act Biomater, 2012, 8(1): 449–456.

[8] JING D, TONG S, ZHAI M, et al. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects[J]. Scient Rep, 2015, 5: 17134.

[9] GONG T, LU L, LIU D, et al. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis[J]. J Mater Chem B, 2015, 3(46): 9011–9022.

[10] JING D, LU X L, LUO E, et al. Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow[J]. Bone, 20513, 53(2): 531–540.

[11] HU K, YANG X J, CAI Y L, et al. Preparation of bone-like composite coating using a modified simulated body fluid with high Ca and P concentrations[J]. Surface Coat Technol, 2006, 201(3): 1902–1906.

[12] TENG S H, LEE E J, PARK C S, et al. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates[J]. J Mater Sci: Mater Med, 2008, 19(6): 2453–2461.

[13] DE JONGE L T, LEEUWENBURGH S C, VAN DEN BEUCKEN J J, et al. The osteogenic effect of electrosprayed nanoscale collagen/ calcium phosphate coatings on titanium[J]. Biomaterials, 2010, 31(9): 2461–2469.

[14] BSAT S, SPEIRS A, HUANG X. Recent trends in newly developed plasma-sprayed and sintered coatings for implant applications[J]. J Thermal Spray Technol, 2016, 25(6): 1088–1110.

[15] ZHUANG J, LIN J, LI J, et al. Alternating potentials assisted electrochemical deposition of mineralized collagen coatings[J]. Colloids Surfaces B: Biointerfaces, 2015, 136: 479–487.

[16] 李新梅, 李银锁, 憨勇. 溶液配比及电参数对钛阴极微弧电沉积氧化铝涂层的影响[J]. 硅酸盐学报, 2005, 33(7): 799–805.
LI Xinmei, LI Yinsuo, HAN Yong. J Chin Ceram Soc, 2005, 33(7): 799–805.

[17] ZHUANG J, LIN J, LI J, et al. Electrochemical deposition of mineralized BSA/collagen coating[J]. Mater Sci Eng: C, 2016, 66: 66–76.

[18] 刘榕芳, 肖秀峰, 许道璇. 复合电沉积制备HA/Ag生物陶瓷涂层[J]. 硅酸盐学报, 2003, 31(6): 615–619.
LIU Rongfang, XIAO Xiufeng, XU Daoxuan. J Chin Ceram Soc, 2003, 31(6): 615–619.

[19] Ghrairi N, Bouaicha M. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique[J]. Nanoscale Res Lett, 2012, 7(1): 357.

[20] Ling T, Lin J, Tu J, et al. Mineralized collagen coatings formed by electrochemical deposition[J]. J Mater Sci: Mater Med, 2013, 24(12): 2709–2718.

[21] GEETHA M, SINGH A, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review[J]. Prog Mater Sci, 2009, 54(3): 397–425.

[22] 马楚凡, 李冬梅, 李贺军, . 微弧氧化和电泳沉积复合制备羟基磷灰石/TiO2复合涂层及其生物学特性[J]. 硅酸盐学报, 2005, 33(3): 323–329.
MA Chufan, LI Dongmei, LI Hejun, et al. J Chin Ceram Soc, 2005, 33(3): 323–329.

[23] MORRA M, CASSINELLI C, CASCARDO G, et al. Multifunctional implant surfaces: Surface characterization and bone response to acid-etched Ti implants surface-modified by fibrillar collagen I[J]. J Biomed Mater Res Part A, 2010, 94(1): 271–279.

[24] LIN X, HAO J J, LIU L Y. Preparation and research progress of biological active ceramic coating material[J]. Plat Finish, 2012, 4: 005.

[25] PAN Y, CHEN C, WANG D, et al. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings[J]. Mater Chem Phys, 2013, 141(2): 842–849.

[26] BOLELLI G, CANNILLO V, GADOW R, et al. Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings[J]. J Eur Ceram Soc, 2009, 29(11): 2249–2257.

[27] 黄紫洋, 刘榕芳, 肖秀峰. 电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J]. 硅酸盐学报, 2003, 31: 591–597.
Huang Zhiyang, Liu Rongfang, Xiao Xiufeng. J Chin Ceram Soc, 2003, 31: 591–597.

[28] 王周成, 倪永金, 黄金聪. 电泳沉积和反应结合制备羟基磷灰石/氧化铝复合涂层[J]. 硅酸盐学报, 2008, 36(6): 799–804.
WANG Zhoucheng, NI Yongjin, HUANG Jincong. J Chin Ceram Soc, 2008, 36(6): 799–804.

[29] 吴振军, 何莉萍, 陈宗璋. 两步电化学法制备羟基磷灰石/氧化铝复合生物涂层的研究[J]. 硅酸盐学报, 2005, 33(2): 230–234.
WU Zhenjun, HE Liping, CHEN Zongzhang. J Chin Ceram Soc, 2005, 33(2): 230–234.

[30] RAKNGARM A, MUTOH Y. Electrochemical depositions of calcium phosphate film on commercial pure titanium and Ti–6Al–4V in two types of electrolyte at room temperature[J]. Mater Sci Eng: C, 2009, 29(1): 275–283.

[31] 肖秀峰, 刘榕芳, 郑炀曾, . 水热电沉积法制备羟基磷灰石/氧化钛复合涂层的研究[J]. 硅酸盐学报, 2004, 32(6): 728–733.
Xiao Xiufeng, Liu Rongfang, Zheng Yangceng, et al. J Chin Ceram Soc, 2004, 32(6): 728–733.

[32] HE D, LIU P, LIU X, et al. Hydroxyapatite bioceramic coatings prepared by hydrothermal-electrochemical deposition method[J]. J Wuhan Univ Technol Mater Sci Ed, 2014, 29(2): 398–400.

[33] RIAL L, RODAL P, LOPEZ-ALVEREZ M, et al. Bioceramic coatings on biomorphic SiC by electrophoretic deposition[C]//Materials Science Forum. Trans Tech Publications, 2008, 587: 86–90.

[34] FATHI M, DOOSTMOHAMMADI A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant[J]. J Mater Process Technol, 2009, 209(3): 1385–1391.

[35] 陈晓明, 李世普. 在非水溶液体系中电泳沉积Ti6Al4V/BG/HA梯度涂层[J]. 硅酸盐学报, 2001, 29(6): 565–568.
CHEN Xiaoming, LI Shipu. J Chin Ceram Soc, 2001, 29(6): 565–568.

[36] STOJANOVIC D, JOKIC B, VELJOVIC D, et al. Bioactive glass–apatite composite coating for titanium implant synthesized by electrophoretic deposition[J]. J Eur Ceram Soc, 2007, 27(2): 1595–1599.

[37] CHEN Q, CORDERO-ARIAS L, ROETHER J A, et al. Alginate/ Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition[J]. Surface Coat Technol, 2013,233:49–56.

[38] DURGALAKSHMI D, RAKKESH R A, BALAKUMAR S. Stacked bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies[J]. Appl Surface Sci, 2015, 349: 561–569.

[39] WANG X, CAI S, XU G, et al. Surface characteristics and corrosion resistance of sol–gel derived CaO–P2O5–SrO–Na2O bioglass–ceramic coated Mg alloy by different heat-treatment temperatures[J]. J Sol-Gel Sci Technol, 2013, 67(3): 629–638.

[40] YANG K, PARK E, LEE J S, et al. Biodegradable nanotopography combined with neurotrophic signals enhances contact guidance and neuronal differentiation of human neural stem cells[J]. Macromol Biosci, 2015, 15(10): 1348–1356.

[41] HU Y, CAI K, LUO Z, et al. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces[J]. Biomaterials, 2012, 33(13): 3515–3528.

[42] OU K L, WU J, LAI W F T, et al. Effects of the nanostructure and nanoporosity on bioactive nanohydroxyapatite/reconstituted collagen by electrodeposition[J]. J Biomed MaterRes Part A, 2010, 92(3): 906–912.

[43] JENNY I, SAR C, LIN Y Z, et al. Growth factors-loaded calcium phosphate/polymer hybrid coating with sequential release behavior prepared via electrochemical deposition method[J]. Surface Coat Technol, 2016, 303: 237–243.

[44] CHEN L, LIN J, LI J, et al. Spatially-controlled distribution of HACC in mineralized collagen coatings for improving rhBMP-2 loading and release behavior[J]. Colloids Surfaces B: Biointerfaces, 2016, 145: 114–121.

[45] DALBY M J, GADEGAARD N, TARE R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nat Mater, 2007, 6(12): 997–1003.

[46] LI Y, LI B, FU X, et al. Anodic oxidation modification improve bioactivity and biocompatibility of titanium implant surface[J]. J Hard Tissue Biology, 2013, 22(3): 351–358.

[47] CHEN X, CAI K, LAI M, et al. Mesenchymal Stem Cells Differentiation on Hierarchically Micro/Nano-Structured Titanium Substrates[J]. Adv Eng Mater, 2012, 14(5): B216–B23.

[48] VOGEL V, SHEETZ M. Local force and geometry sensing regulate cell functions[J]. Nat Rev Molecul Cell Biol, 2006, 7(4): 265–275.

[49] NAMGUNG S, BAIK K Y, PARK J, et al. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes[J]. ACS Nano, 2011, 5(9): 7383–7390.

[50] GUO C Y, MATINLINNA J P, TANG A T H. Effects of surface charges on dental implants: past[J]. Bresent, and future[J]. Int J Biomater, 2012(3): 381535.

[51] SERRA MORENO J, SABBIETI M G, AGAS D, et al. Polysaccharides immobilized in polypyrrole matrices are able to induce osteogenic differentiation in mouse mesenchymal stem cells[J]. J Tissue Eng Regenerative Med, 2014, 8(12): 989–999.

[52] HE Y, WANG S, MU J, et al. Synthesis of polypyrrole nanowires with positive effect on MC3T3-E1 cell functions through electrical stimulation[J]. Mater Sci Eng: C, 2017, 71: 43–50.

[53] ZHAO P, LIU Y, XIAO L, et al. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein[J]. J Mater Chem B, 2015, 3(38): 7577–7784.

[54] AINSLIE K M, SHARMA G, DYER M A, et al. Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires[J]. Nano Lett, 2005, 5(9): 1852–1856.

[55] YUN H M, AHN S J, PARK K R, et al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation[J]. Biomaterials, 2016, 85: 88–98.

[56] 杨惠铃, 梅盛林, 黄萍, . 紫外线照射对钛种植体不同管径 TiO2 纳米管涂层抗菌性能的影响[J]. 中华口腔医学杂志, 2012, 47(12): 748–752. 
YANG Hiuling, MEI Shenglin, HUANG Ping, et al. Chin J Stomatoly (in Chinese), 2012, 47(12): 748–52.

[57] ZHANG X, WANG H, LI J, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceram Int, 2016, 42(15): 17095–17100.

[58] M NCH D, SAHL H G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria—Impact on binding and efficacy of antimicrobial peptides[J]. Biochim Biophys Act-Biomembr, 2015, 1848(11): 3062–3071.

[59] BUFFET-BATAILLON S, TATTEVIN P, BONNAURE-MALLET M, et al. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review[J]. Int J Antimicrob Agents, 2012, 39(5): 381–389.

[60] ZHAO C, HOU P, NI J, et al. Ag-incorporated FHA coating on pure Mg: degradation and in vitro antibacterial properties[J]. ACS Appl Mater Interfaces, 2016, 8(8): 5093–5103.

[61] FU C, ZHANG X, SAVINO K, et al. Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis[J]. Surface Coat Technol, 2016, 301: 13–9.

[62] NAN L, YANG K. Cu ions dissolution from Cu-bearing antibacterial stainless steel[J]. J Mater Sci Technol, 2010, 26(10): 941–944.

[63] SHINONAGA Y, ARITA K. Antibacterial effect of acrylic dental devices after surface modification by fluorine and silver dual-ion implantation[J]. Act Biomater, 2012, 8(3): 1388–1393.

[64] ŠARI? L, PEZO L, ŠARI? B, et al. Calcium-dependent antibacterial activity of donkey’s milk against Salmonella[J]. Annals Microbiol, 2016, 67(2): 1–10.

[65] ZANE A, ZUO R, VILLAMENA F A, et al. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations[J]. Int J Nanomed, 2016, 11: 6459.

[66] ZHOU G, LI Y, XIAO W, et al. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex[J]. J Biomed Mater Res Part A, 2008, 85(4): 929–37.

[67] LI P, ZHANG X, XU R, et al. Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application[J]. Surface Coat Technol, 2013, 232: 370–375.

[68] WANG Y, GUO X, PAN R, et al. Electrodeposition of chitosan/gelatin/ nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity[J]. Mater Sci Eng: C, 2015, 53: 222–228.

[69] SANTOS C M, MILAGROS C K, AHMED F, et al. Bactericidal and anticorrosion properties in PVK/MWNT nanocomposite coatings on stainless steel[J]. Macromol Mater Eng, 2012, 297(8): 807–813.

[70] SIEPMANN J, PEPPAS N. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)[J]. Adv Drug Delivery Rev, 2012, 64: 163–174.

[71] PISHBIN F, MOURIN?O V, FLOR S, et al. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants[J]. ACS Appl Mater Interfaces, 2014, 6(11): 8796–8806.

[72] YANG C C, LIN C C, YEN S K. Electrochemical deposition of vancomycin/chitosan composite on Ti alloy[J]. J Electrochem Soc, 2011, 158(12): E152–E8.

[73] PATEL K D, SINGH R K, LEE E-J, et al. Tailoring solubility and drug release from electrophoretic deposited chitosan–gelatin films on titanium[J]. Surface Coat Technol, 2014, 242: 232–236.

[74] ZHOU J, CAI X, CHENG K, et al. Release behaviors of drug loaded chitosan/calcium phosphate coatings on titanium[J]. Thin Solid Films, 2011, 519(15):4 658–4662.

[75] KONG Z, LIN J, YU M, et al. Enhanced loading and controlled release of rhBMP-2 in thin mineralized collagen coatings with the aid of chitosan nanospheres and its biological evaluations[J]. J Mater Chem B, 2014, 2(28): 4572–4582.

[76] STROBEL C, BORMANN N, KADOW-ROMACKER A, et al. Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2) substances from a one-component polymeric coating on implants[J]. J Control Release, 2011, 156(1): 37–45.

[77] Podporska-Carroll J, Panaitescu E, Quilty B, et al. Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes[J]. Appl Catal B: Environmental, 2015, 176: 70–75.

[78] Zhang H, Molino P J, Wallace G G, et al. Quantifying molecular-level cell adhesion on electroactive conducting polymers using electrochemical-single cell force spectroscopy[J]. Scient Rep, 2015, 5: 13334.

[79] Huo K, Gao B, Fu J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays[J]. Rsc Adv, 2014, 4(33): 17300–17324.

[80] Zhuang J, Lin J, Li J, et al. Electrochemical deposition of mineralized BSA/collagen coating[J]. Mater Sci Eng: C, 2016, 66: 66–76.

[81] Yu M, You D, Zhuang J, et al. Controlled release of naringin in metal-organic frameworks (MOFs) loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity[J]. ACS Appl Mater Interfaces, 2017, 9(23): 19698–19705.

[82] Durgalakshmi D, Rakkesh R A, Balakumar S. Stacked bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies[J]. Appl Surface Sci, 2015, 349: 561–569.

[83] Karthika A, Kavitha L, Surendiran M, et al. Fabrication of divalent ion substituted hydroxyapatite/gelatin nanocomposite coating on electron beam treated titanium: mechanical, anticorrosive, antibacterial and bioactive evaluations[J]. Rsc Adv, 2015, 5(59): 47341–47352.

[84] Gallo J, Holinka M, Moucha C S. Antibacterial surface treatment for orthopaedic implants[J]. Int J Molecul Sci, 2014, 15(8): 13849–13880.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com